Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landscapes on buried glaciers in Antarctica’s dry valleys help decipher recent ice ages on Mars

19.12.2003


Studies of the unique landscape in the Dry Valleys of Antarctica provide new insights into the origin of similar features on Mars and provide one line of evidence that suggests the Red Planet has recently experienced an ice age, according to a paper in this week’s issue of the journal Nature.

The distribution of hexagonal mounds and other features on the Martian surface at mid-latitudes similar to those in the Dry Valleys also supports previous scientific assertions that a significant amount of ice lies trapped beneath the Red Planet’s surface.

David Marchant, a Boston University researcher who has studied the Dry Valleys for 17 years, co-authored the paper with James W. Head (lead author), John Mustard and Ralph Milliken, at Brown University, and Mikhail Kreslavsky of Kharkov National University in Ukraine.



The National Science Foundation (NSF) supported Marchant’s work in the Dry Valleys, which helped underlie the assertions in the Nature paper. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering. NSF manages the U.S. Antarctic Program, which supports and coordinates virtually all U.S. scientific research on the southernmost continent.

Head, Mustard and Milliken were supported by NASA.

The floor of Antarctica’s Beacon Valley, in particular, is covered with hexagonal mounds that, from the air, resemble the patterns of cracked mud on a dry lakebed. The Dry Valleys mounds, however, often measure meters in diameter.

Although these polygon-shaped features occur throughout the Arctic and Antarctic, an unusual variety found in the western Dry Valleys region has received particular attention because it forms only in perennially frozen soils with significant ice content. These polygons form as sub-freezing temperatures fluctuate, causing the underlying ice to contract in a hexagonal pattern. As the ice contracts, fine sediments sift down into the cracks, leaving a coarse-grained deposit covering the ice.

The research reported in Nature shows that similar mounds and other formations that appear in the mid-to-high latitudes on Mars could indicate ice buried near the planet’s surface as well. Using new information on the global distribution of surface landforms on Mars, together with data gathered from NASA’s Mars Global Surveyor and Mars Odyssey missions, Head and other researchers were able to piece together a history of recent ice ages on Mars.

"The last ice age on Mars began about 2.1 million years ago and ended as recently as 400,000 years ago," according to Head.

Like ice ages on Earth, Martian ice ages are driven by variations in the planet’s orbit, particularly the tilt of the planet’s axis. But Martian ice ages, unlike ice ages on Earth, appear to begin as the polar regions warm, rather than cool.

Warming of the Martian Poles causes the planet’s ice caps to partially vaporize and release water vapor into the Martian atmosphere. Winds transport the water vapor, along with ubiquitous Martian dust, toward the equator and deposit it in a meters-thick layer as far as 30 degrees north and south latitude. There, it drapes over existing terrain, smoothing the Martian surface.

Head and his co-authors report that emplacement of this meters- thick layer of snow and dust at 30 degree latitudes represents an "ice age" on Mars. The small number of impact craters seen in these features, along with the known patterns of changes in Mars’ orbit and tilt, are used to estimate the age of these Martian ice ages.

The Nature findings complement a paper recently published in the journal Geology, in which Head and Marchant argue that features on the surface of the Red Planet are remarkably like glacial features found only in the Dry Valleys.

The findings not only have implications for the search for microbial life on Mars, but also may help scientists better understand the unique Polar desert environment of the Dry Valleys, and in particular the ancient climate record that may be stored in the landscape.

"These extreme changes on Mars provide perspective for interpreting what we see on Earth. Landforms on Mars that appear to be related to climate changes help us calibrate and understand similar landforms on Earth. Furthermore, the range of microenvironments in the Antarctic Dry Valleys helps us read the Mars record," said Marchant.

If the analogy between the geologic processes on Mars and those in the Dry Valleys holds true, then scientists may conclude that Mars may be more hospitable to microbial life than previously suspected.

Biologists continue to make discoveries that push back the boundaries at which conditions are too extreme to support life. NSF-funded researchers, for example, have offered evidence that microbes can survive in extremes of cold and darkness between ice crystals at the South Pole.

Although the Dry Valleys were thought to be a virtual dead zone when first explored a century ago, new evidence suggests that the lakes and other landscape features support microscopic life.

Images/B-Roll: For Betacam SP B-roll of the Antarctic Dry Valleys, please contact Dena Headlee, dheadlee@nsf.gov, 703-292-7739

NSF Program Officer: Scott Borg, 703-292-8030, sborg@nsf.gov

Principal Investigator: David Marchant, 617-353-3236, marchant@bu.edu

Peter West | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>