Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds evidence for global methane release about 600 million years ago

18.12.2003


New findings may have implications for the stability of today’s climate



Scientists at the University of California, Riverside and Columbia University have found evidence of the release of an enormous quantity of methane gas as ice sheets melted at the end of a global ice age about 600 million years ago, possibly altering the ocean’s chemistry, influencing oxygen levels in the ocean and atmosphere, and enhancing climate warming because methane is a powerful greenhouse gas. The study was published in today’s issue of the journal Nature.

The global ice age is of particular interest to paleobiologists because it took place shortly before the first appearance of animals in the fossil record, and may have supplied an environmental drive to evolution. The Earth’s most severe climate is thought to have occurred about 600 million years ago with ice sheets stretching to the tropics. Some scientists have referred to times of such extreme cold as a "snowball Earth" condition, assuming that the ocean would have been totally ice covered.


The new evidence is based on a chemical fingerprint of the methane gas from rocks in south China, which is strongly enriched in lighter carbon isotope, carbon-12, and which the researchers measured in ancient ocean carbonate sediments that were deposited as the temperature rose. The methane gas was apparently derived from the melting of frozen methane clathrate crystals that had accumulated beneath the seafloor.

"The extremely negative isotopic values from these sediments provide unambiguous evidence for methane-derived carbon," said Ganqing Jiang, a researcher at the University of California, Riverside, and the article’s lead author. "The identification of a methane-derived isotope signal and widespread seep-like deposits indicate the massive passage of methane through the sediments," he added. "We now have an important record of the role methane plays in climate change and the global carbon cycle."

Methane clathrates are increasingly thought to play a role in mass extinctions associated with significant climate change in the Earth’s history, and they are a large and exceedingly unstable source of greenhouse gas, greater than the equivalent of instantaneously burning all the oil reserves on Earth.

"Linking these dramatic climate events to changes in the methane clathrate pool has important implications for the stability of our current climate," said Martin Kennedy, an associate professor of geology at UC Riverside. "The Earth has a large unstable pool of these clathrates in ocean sediments today, and it is thought that a few degrees of ocean warming could trigger large-scale release into the atmosphere. We now have strong evidence of this doomsday scenario in one of the most important intervals of Earth’s biologic history".

The recognition of extreme isotope variability in the rocks examined in south China is expected to stimulate new research.

"This is a very exciting result because the existence of methane seeps and their possible significance in explaining the unusual carbon isotopic signature of the carbonate deposits had been discounted by many on the basis of the lack of expected isotopic heterogeneity," said Nicholas Christie-Blick, a professor of earth and environmental sciences at the Lamont-Doherty Earth Observatory of Columbia University. "If the methane hydrate hypothesis is borne out by new studies that are sure to be stimulated by this research, it represents one more reason for questioning why the snowball Earth edifice is needed."

The National Science Foundation’s (NSF) division of earth sciences funded the research. NSF is the federal agency responsible for supporting basic science, engineering and education research. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion.


Web Resources The Lamont-Doherty Earth Observatory at Columbia University: http://www.ldeo.columbia.edu/
Nicholas Christie-Blick’s Web page: http://www.ldeo.columbia.edu/~ncb/
Martin Kennedy’s Web page: http://earthscience.ucr.edu/index.php?content=people/kennedy/kennedy.html


The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development.

Ricardo Duran | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.ldeo.columbia.edu/~ncb/
http://earthscience.ucr.edu/index.php?content=people/kennedy/kennedy.html

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>