Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR scientists investigate air above Antarctica

11.12.2003


Four scientists from the National Center for Atmospheric Research (NCAR) are studying the chemistry of sulfur and nitrogen in the air above Antarctica. The investigation will help them understand the continent’s chemical processes better, as well as refine scientists’ interpretations of ice cores, which provide information on past climates.



The expedition, which runs through January 4, is part of the Antarctic Tropospheric Chemistry Investigation (ANTCI), a four-year program funded by NCAR’s primary sponsor, the National Science Foundation. Along with NCAR, 10 universities and federal laboratories are participating in the investigation.

"The atmosphere of Antarctica is probably the least explored part of the lower atmosphere on the planet right now. This is the first time people have looked at any of these chemical processes in this environment," says Lee Mauldin, a chemist from NCAR and one of the project’s co-investigators.


The scientists are studying sulfur to learn more about its oxidation processes, or how it reacts with oxygen. Natural sources of sulfur in the atmosphere include emissions from volcanoes and the oceans. In Antarctica sulfur is released into the air mainly in the form of dimethyl sulfide, a reduced form of sulfur. In the air over Antarctica, the dimethyl sulfide reacts with oxygen to form sulfates. The sulfates are eventually transferred from the air to snow and fall to the ground, where they become part of the snow pack. Scientists drill ice cores deep into the snow pack and measure their sulfate concentrations to determine past geophysical events such as volcanic eruptions, El Niño episodes, and climate change.

The scientists are also studying nitrogen chemistry because they’ve found evidence of high levels of atmospheric nitric oxide, a reactive form of nitrogen, at the South Pole. In most regions of the world, nitric oxide is considered a pollutant, but it occurs naturally at the Pole when the sun shines on nitrate in the snow and a photochemical reaction releases the nitric oxide into the air. Levels are nearly 10 times higher at the Pole than in other parts of Antarctica.

"Sunlight releasing the nitric oxide in the snow is a unique phenomenon that nobody has seen before at the Pole. These levels bring the oxidizing capacity at the South Pole on par with that observed in the tropics, a region where this capacity is expected to be high," Mauldin says. "As to the source of the nitrate in the snow, we don’t know that yet," he adds.

Mauldin says that one of the reasons it is important to understand sulfur and nitrogen processes in Antarctica is because they are natural phenomena happening in one of the more remote regions of the planet. "You need to understand background processes in order to differentiate them from anthropogenic [human-caused] processes when you look at more complicated areas," he says.

Scientists will measure the chemicals from the ground at the South Pole and from the air in different locations above Antarctica. During the airborne component, they’ll fly from McMurdo Station on the coast in a Twin Otter aircraft with air-sampling instruments on board.

As part of ANTCI’s outreach component, a high school teacher from Rockdale County High School in Conyers, Georgia, is accompanying the scientists and will communicate with her students via an interactive Web site that is also available to the public. The teacher, Jill Beach, will help set up experiments, prepare instruments, and compile data, in addition to maintaining the Web site.

"Not only will it be helpful to have another set of hands, but Jill’s going to be able to provide a unique outlook to people back home," Mauldin says.

The scientists will return to Antarctica to take more airborne measurements in 2005 or 2006.


The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under primary sponsorship by the National Science Foundation. Opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Anatta | EurekAlert!
Further information:
http://antci.acd.ucar.edu
http://www.ucar.edu/ucar/

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>