Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR model shows decrease in global dust by 2100

09.12.2003


One of the first global-scale simulations of dust and climate from preindustrial times to the year 2100 projects a worldwide decrease in airborne dust of 20–63% by the end of this century. The computer model studies show less wind, more moisture, and enhanced vegetation in desert areas as carbon dioxide increases over the next century, keeping more of the world’s dust on the ground. Coauthor Natalie Mahowald of the National Center for Atmospheric Research presented the results this week at the American Geophysical Union’s annual meeting in San Francisco.



"Reductions in global dust levels could have a profound impact on future climate predictions," says Mahowald. Dust helps to lower global temperature by reflecting sunlight, as well as by depositing iron in the ocean and thus fertilizing marine organisms that remove carbon dioxide from the atmosphere.

Mahowald and Chao Luo (University of California, Santa Barbara) combined NCAR’s global Climate System Model with other software specifically tailored to simulate dust under a variety of climate regimes. The climate changes are driven primarily by an increase in atmospheric carbon dioxide from 280 parts per million in 1890 (preindustrial) to 500 ppm by 2090--a scenario considered reasonable by the Intergovernmental Panel on Climate Change.


The NCAR simulation shows decreasing winds and increasing moisture across arid, low-lying regions such as the Sahara, which produce much of the world’s dust. It also includes the process through which a gradual increase in atmospheric carbon dioxide may stimulate photosynthesis of plants in arid regions, which in turn would reduce the extent of unvegetated areas and the dust they produce.

Mahowald and Luo examined six different scenarios for the interaction of plants and climate across each of three decades: 1880–1889 (preindustrial), 1990-1999, and 2090–2099. For the six scenarios, the decrease in extent of desert dust sources in 2090–2099 compared to 1990–1999 ranges from 0 to 39 percent. The decrease in how much dust gets entrained into the atmosphere is even more dramatic: from 20 to 63 percent, depending on the scenario.

The wide variation among scenarios highlights the uncertainty in this new area of research, says Mahowald. She believes that climate assessments such as those from the Intergovernmental Panel on Climate Change may be underestimating both the magnitude and the uncertainty of dust’s global impact on climate.

"There is substantial spread in the model projections for climate close to large arid regions such as the Sahel," says Mahowald. "It is very difficult to predict whether particular regions will get wetter or drier."


The research was funded by NASA and the National Science Foundation, NCAR’s primary sponsor.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/ucar/

More articles from Earth Sciences:

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

nachricht Arctic rivers provide fingerprint of carbon release from thawing permafrost
08.05.2019 | Stockholm University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>