Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full body scan: Imaging project offers view inside Earth

05.12.2003


Results may help settle debate about how Earth sheds its internal heat



Like doctors taking a sonogram of a human body, Princeton geoscientists have captured images of the interior of the Earth and revealed structures that help explain how the planet changes and ages.

The scientists used tremors from earthquakes to probe the inside of the planet just as sound waves allow doctors to look inside a mother’s womb. The technique, a greatly refined version of earlier efforts, produced a surprisingly sharp image and yielded the first direct measurements of giant spouts of heat, called mantle plumes, that emanate from deep within the planet.


Mantle plumes are believed to cause island chains, such as the Hawaiian Islands and Iceland, when the Earth’s crust passes over the column of heat. Although accepted by most scientists, the existence of mantle plumes has been fiercely contested by a minority of researchers in recent years.

"This is the first visual evidence that mantle plumes exist," said Raffaella Montelli, a Princeton geoscientist and the lead author of a paper published online by the journal Science on Dec. 4. "There is still a very open debate, but we are saying ’Look, here they are; you can see them.’"

Montelli, who received a Ph.D. from Princeton this year and is now a postdoctoral fellow, conducted the study in collaboration with Princeton professors Guust Nolet and Tony Dahlen as well as Guy Masters of the University of California-San Diego, Robert Engdahl of the University of Colorado and Shu-Huei Hung of National Taiwan University.

The scientists used data from more than 3,000 seismographic stations around the world. The stations monitored tremors from more than 86,000 earthquakes since 1964. The seismic waves change speed slightly when they encounter different temperatures and materials in the Earth, said Nolet. In particular, the waves slow down when they encounter warm spots where the rock is very slightly softer than in cooler spots.

"If we can find out if waves are being slowed down or speeded up, then we know whether the Earth is locally hotter or colder," Nolet said. The researchers analyzed these changes in speed and assembled their data into a three-dimensional temperature map. They immediately noticed broad columns of warm material rising out of the Earth’s mantle, which is the layer nearly 2,000 miles thick just under the crust.

"We started the research without any thought of mantle plumes," said Nolet. Their goal was to improve on a century-old theory of how seismic waves travel through the Earth, taking into account how the waves interact with varying temperatures and materials. In addition to developing a better theory, the researchers selected only the highest quality data from millions of measurements that were available, Nolet said.

When the heat columns appeared in their map, the researchers compared their locations to those of suspected mantle plumes around the globe and found close correlations. They identified 32 plumes, most of which are located beneath known hot spots that had been assumed to result from plumes. A few are entirely new and were not associated with known hot spots. At the same time, some expected plumes, such as one believed to be under Yellowstone National Park, did not show up.

The results are an important step in understanding mantle plumes and also raise a host of new questions, said Princeton geophysicist Jason Morgan, who first proposed the existence of mantle plumes in 1971 and, in December, won the National Medal of Science in part for his work on the subject.

The results, for example, do not show all the plumes extending from the bottom of the mantle as he and others anticipated, Morgan said. Some seem to begin in shallower parts of the mantle, he said, noting that understanding the reason for this is likely to provide valuable insights into the dynamics within the Earth. "Some plumes may be gaining strength and others may be fading. I don’t know what will come of that but it will be something interesting I am sure," he said.

Montelli said she plans to continue refining the imaging technique and will repeat the analysis with a different type of seismic wave, which should yield an even sharper image of the plumes.


The research was funded by grants from the National Science Foundation

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Earth Sciences:

nachricht Shrinking of Greenland's glaciers began accelerating in 2000, research finds
11.12.2019 | Ohio State University

nachricht One-third of recent global methane increase comes from tropical Africa
11.12.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>