Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’No doubt’ human activity is affecting global climate

03.12.2003


Two of the nation’s premier atmospheric scientists, after reviewing extensive research by their colleagues, say there is no longer any doubt that human activities are having measurable-and increasing-impacts on global climate. Their study cites atmospheric observations and multiple computer models to paint a detailed picture of climate changes likely to buffet Earth in coming decades, including rising temperatures and an increase in extreme weather events, such as flooding and drought. The study appears December 5 in Science as part of the journal’s "State of the Planet" series.


Drought and other extreme climate events may become more likely in the future because of global climate change. (Photo by Carlye Calvin)


Motor vehicles are a significant source of carbon dioxide. Two of the nation’s premier atmospheric scientists now say there is "no doubt" that carbon dioxide emissions, along with other human-related activities, are impacting global climate. (Photo by Carlye Calvin)



The coauthors-Thomas Karl, director of NOAA’s National Climatic Data Center, and Kevin Trenberth, head of the Climate Analysis Section at the National Center for Atmospheric Research (NCAR)-conclude that industrial emissions have been the dominant influence on climate change for the past 50 years, overwhelming natural forces. The most important of these emissions is carbon dioxide, a greenhouse gas that traps solar radiation and warms the planet.

"There is no doubt that the composition of the atmosphere is changing because of human activities, and today greenhouse gases are the largest human influence on global climate," they write. "The likely result is more frequent heat waves, droughts, extreme precipitation events, and related impacts, e.g., wildfires, heat stress, vegetation changes, and sea-level rise which will be regionally dependent."


Karl and Trenberth estimate that, between 1990 and 2100, there is a 90 percent probability that global temperatures will rise by 1.7 to 4.9 degrees Celsius (3.1 to 8.9 degrees Fahrenheit), because of human influences on climate. Such warming would have widespread impacts on society and the environment, including continued melting of glaciers and the great ice sheets of Greenland, inundating the world’s coasts. The authors base their estimate on computer model experiments by climate scientists, observations of atmospheric changes, and recorded climate changes over the past century.

However, there is still large uncertainty in understanding the global climate and how it will change, says Karl. If temperatures rise 1.7 degrees, the expected changes would be relatively small, whereas a 4.9-degree increase could bring drastic impacts, some of which may be unforeseen.

Carbon dioxide levels in the atmosphere have risen by 31 percent since preindustrial times, from 280 parts per million by volume (ppmv) to over 370 ppmv today. Other human activities, such as emissions of sulfate and soot particles and the development of urban areas, have significant but more localized climate impacts. Such activities may enhance or mask the larger-scale warming from greenhouse gases, but not offset it, according to the authors.

If societies could successfully cut emissions and stabilize carbon dioxide levels in the atmosphere, temperatures would still increase by an estimated 0.5 degree C (0.9 degree F) over a period of decades, Karl and Trenberth warn. This is because greenhouse gases are slow to cycle out of the atmosphere. "Given what has happened to date and is projected in the future, significant further climate change is guaranteed," the authors state.

If current emissions continue, the world would face the fastest rate of climate change in at least the last 10,000 years. This could potentially alter ocean current circulations and radically change existing climate patterns. Moreover, certain natural processes would tend to accelerate the warming. For example, as snow cover melts away, the darker land and water surface would absorb more solar radiation, further increasing temperatures.

Karl and Trenberth say more research is needed to pin down both the global and regional impacts of climate change. Scientists, for example, have yet to determine the temperature impacts of increased cloud cover or how changes in the atmosphere will influence El Niño, the periodic warming of Pacific Ocean waters that affects weather patterns throughout much of the world. The authors call for multiple computer model studies to address the complex aspects of weather and climate. The models must be able to integrate all components of Earth’s climate system-physical, chemical, and biological. This, in turn, will require considerable international cooperation and the establishment of a global climate monitoring system to collect and analyze data.

Because of the broad range of potential change in temperature, it’s extremely important to ensure that we have a comprehensive observing system to track unforeseen changes and variations, says Karl.

"Climate change is truly a global issue, one that may prove to be humanity’s greatest challenge," the authors conclude. "It is very unlikely to be adequately addressed without greatly improved international cooperation and action."


To subscribe via e-mail send name, title, affiliation, postal address, fax, and phone number to yvonnem@ucar.edu.

Anatta | UCAR
Further information:
http://www.ucar.edu/communications/newsreleases/2003

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>