Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon Basin sediment accumulation influenced by La Niña

24.11.2003


Enormous quantities of sediment are deposited in the flood-plains traversed by the Amazon and its tributaries in times of flooding. Scientists have hitherto considered the sedimentation rate to be generally constant with time.



Research conducted jointly by the IRD, the Universities of Washington1 and California2 and the Bolivian National Meteorology and Hydrology Service (SENAMHI) of La Paz, on two Bolivian rivers shows on the contrary that such events are irregular and less frequent than has been thought. These results, just published in Nature, emphasize that, in this Andean-Amazonian foreland, sedimentation is closely dependent on the flood amplitude, in turn linked to climatic variability, and particularly to La Niña, the cold phase of the ENSO (El Niño Southern Oscillation).

Continental-scale rivers can transport enormous sediment loads. In periods of flood, a proportion of these is deposited on flood-plains. In the Amazon Basin, crossed by the Earth’s largest river, great volumes of such sequestered sediment accumulations occur. This is especially so in the Llanos, the Bolivian lowland flood-plains which stretch from the foot of the Andes. An estimated 100 to 150 million tonnes of sediment are deposited each year respectively in the Rio Beni and the Rio Mamore flood-plains. These are the two Andean tributaries of the Rio Madeira, one of the Amazon’s main tributaries and source of more than half the sediment load transported by that river.


The inter-annual sediment accumulation rate has up to now been considered to be generally constant. Now a study conducted in the floodplain which receives these two tributaries refutes this. It is the first to reveal an episodic pattern. During the past century, large sediment accumulation events indeed occurred only quite infrequently (11 events recorded over 90 years of analysis), corresponding to an average recurrence interval of eight years.

These results were the fruit of investigations forming part of the HyBAm (Hydrogéodynamique du Bassin amazonien) programme, conducted by a joint research team involving the IRD (working in the combined research unit UMR LMTG-CNRS-IRD- Paul Sabatier University of Toulouse), the Universities of Washington1 and California2, and the Bolivian National Meteorology and Hydrology Service (SENAMHI) of La Paz. 210Pb3 activity profile analysis on 300 sediment cores sampled from the Beni and Mamore basin flood-plains, interpreted using a new geochronological model developed by the University of Washington,1 enabled them to date discrete sedimentary packages to near-annual resolution. They revealed evidence of an episodic pattern in the main sedimentation events.

Why does sediment accumulation in this part of the Amazon Basin show an episodic pattern? Climatic variability plays a prime role. The team established a significant correlation between these periods of mass sediment deposition and La Niña, the cold phase of the ENSO (El Niño Southern Oscillation) climatic cycle. During most La Niña years over the past century, the Andean relief has been subjected to torrential rainfall generating fierce flooding and intensive mechanical erosion on the Andean slopes. Recordings from a hydrological station situated at the foot of the Andes showed this.

Measurements were continued and followed up in the Hybam programme. When these floods occur, huge volumes of sediment are eroded from the Andean piedmont sub-basins and transported towards the floodplain. For a proportion of these sediments to have been deposited there (for example up to 40% in the Beni Basin flood-plain), the researchers estimate that the water-level rise, during these years of high sedimentation rate, must have been extremely rapid, in excess of 8 000 m3/s. The floods would then have reached the force necessary to cut crevasses in small natural levees along the main stems of the Beni and Mamore rivers and inundate a large expanse of the plain.

With the new data the research team also studied the century-long depositional history in the floodplain of mercury associated with fine particles and the role of these in trapping metal elements transported by the great Amazonian rivers and their tributaries. Also brought to light was a strong increase, over the past 30 years, of mercury concentrations in the sediment particles deposited in the Rio Beni plain. This corresponds to the recent "boom" in gold prospecting, now at an end, but also to the colonization of new arable land on the steep flanks of the Andean piedmont.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/

More articles from Earth Sciences:

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht How the ocean is gnawing away at glaciers
04.02.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

How do rotor blades deform in wind gusts?

17.02.2020 | Physics and Astronomy

Understanding Metal Ion Release from Hip Implants

17.02.2020 | Materials Sciences

Computer simulations visualize how DNA is recognized to convert cells into stem cells

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>