Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stay south of thunderstorm paths, says Purdue scientist

18.11.2003


Damaging winds can occur in previously overlooked places within a thunderstorm, according to a Purdue University earth scientist. The finding could help meteorologists save lives and reduce injuries by issuing more accurate storm warnings.



Based on new data on the behavior of winds in developing storms, Purdue’s Robert J. "Jeff" Trapp has found that the north side of a storm front can host cyclonic winds that are more intense than those at the storm’s "apex," or leading point, which is generally thought to usher in the strongest winds. These newly found whirlpools of wind can be miles wide and create gusts reaching 100 miles per hour.

"On average, whatever lies in the path of the apex suffers wind damage," said Trapp, who is an associate professor of earth science in Purdue’s School of Science. "However, it’s not the whole story. Meteorologists should be aware of these other vortices in order to present the full picture of a storm front."


The study appears in this month’s Monthly Weather Review. It was co-authored by Morris Weisman of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., where the team conducted computer simulations that contributed to their research.

Using a supercomputer at NCAR, the team initially set out to look at the tornadoes that can form along a front’s leading edge, often called the squall line. These tornadoes are particularly dangerous because of how difficult they are to predict. But what the researchers found in their simulations were much larger vortices that can form at the squall line north of the apex.

"If you’ve watched a weather program’s time-lapse animation of a storm’s development, you’ve seen a squall line as a long, generally north-to-south bank of precipitation," Trapp said. "While the edges of these fronts can resemble straight lines at first, as storms grow in strength a front can look more like a boomerang, with the storm’s apex forming the ’point.’"

Trapp said it is north of this "point" that the vortices generally develop.

"These strong, spinning winds can do great damage over large areas," Trapp said. "They are not tornadoes themselves, but tornadoes can develop from them. We plan to research how this happens as well."

The vortices form only on the north side of the apex because of the spinning of the earth, which tends to deter vortices from forming on the south side.

"The effect of this force, called the Coriolis force, is usually neglected in discussions of thunderstorms," Trapp said. "But out work shows that it is critical to the formation of the damaging vortices in squall lines."

After seeing the vortices form in the simulation, Trapp, Weisman and numerous colleagues across the country observed them in many storms in the Midwest during a recent field program called BAMEX. Trapp said he thinks the reason these vortices have been overlooked in the past is because tracks of storm damage are seldom related back to weather radar images, particularly Doppler radar images, which can indicate the presence of vortices. Special data collected during the BAMEX program will provide Trapp and his colleagues the opportunity to do just that.

Trapp said existing technology could be modified to predict this newly found danger.

"The Doppler radars in use around the U.S., known as ’Nexrads,’ can be used to detect these vortices," he said. "It’s just a matter of adapting the computer software that sorts through the Nexrad data to this problem."

The next step for Trapp and Weisman is to head back to the simulator and attempt to create more sophisticated computer models of the vortices.

"We still have a lot to learn," he said. "Our explanations need to be modified to take into account all the possible real-world factors that we neglected in our initial models. Until we have more specific answers, the most useful thing we can do is simply make meteorologists aware of what could happen and tell them to be on the lookout for it."

This study was funded in part by a grant from the National Science Foundation and by the National Severe Storms Laboratory.


Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Robert "Jeff" Trapp, (765) 496-6661, jtrapp@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/031117.Trapp.vortex.html

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>