Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some large Pacific Northwest quakes could be limited in size by their location

14.11.2003


Large, deep earthquakes have shaken the central Puget Sound region several times in the last century, and nerves have been rattled even more often by less-powerful deep quakes. New University of Washington research suggests the magnitude of these temblors might depend on just where beneath the Earth’s surface they occur.



Events such as the 2001 Nisqually earthquake and large quakes in 1965 and 1949 happened in what is called the Wadati-Benioff zone, an area deep below the surface where the Juan de Fuca tectonic plate is sliding eastward beneath the North American plate. The two plates first meet on the ocean floor off the coast of Washington, Oregon and British Columbia.

If it turns out that such earthquakes are confined to the uppermost part of the Juan de Fuca plate, in its crustal layer, that means the magnitude of such quakes probably is limited to about 7, said Kenneth Creager, a University of Washington Earth and space sciences professor. However, the plate’s crust is only about 3 miles thick, and the cold mantle layer that lies just beneath is much thicker, so a quake that occurs in both layers, in theory, could reach a magnitude of 8, he said.


For a more-detailed examination than previously possible, new tools were devised to analyze data from an experiment called Seismic Hazards Investigations in Puget Sound, or SHIPS. Leiph Preston, now a post-doctoral researcher at the University of Nevada, Reno, created the tools as part of his doctoral research at the UW.

Preston is the lead author of a paper detailing the new analysis published in the Nov. 14 edition of the journal Science. Co-authors are Creager; Robert Crosson, also a UW Earth and space sciences professor; Thomas Brocher with the U.S. Geological Survey in Menlo Park, Calif.; and Anne Tréhu of Oregon State University. The work was funded by the USGS and the National Science Foundation.

In 1998, the SHIPS experiment measured airgun explosions in Puget Sound and the Strait of Juan de Fuca. The detonations generated seismic waves that rebounded from underground structures and then were measured by 200 seismic recorders to generate a subsurface picture.

The boundary between the crust and the mantle in the Juan de Fuca plate created a natural reflector for the sound waves, Preston said, which helped establish a precise location for the boundary. When the depths of various earthquakes were superimposed, it turned out those east of the Olympic Mountains, where the reflector’s depth reaches about 30 miles, occurred mainly in the Juan de Fuca plate’s crust. Quakes west of the Olympics, where the reflector is shallower, occur primarily below it in the plate’s mantle.

"The earthquakes and the reflector are so close to each other that it’s taken us five years to be confident of this interpretation," Creager said.

The crust is largely composed of basalt, but when the plate reaches a depth of about 30 miles the basalt sheds water and is transformed into a denser rock called eclogite.

"The fluids seem to be the key, as they provide the lubricant that allows the two sides of a fault to slip past each other to produce an earthquake," Creager said.

If such an earthquake occurs both in the crust and the mantle, thus allowing it to reach a greater magnitude, it would pose a bigger risk to the heavily populated Interstate 5 corridor west of the Cascades. A magnitude 8 earthquake releases 30 times more energy than a magnitude 7 event, and even though the Juan de Fuca plate goes deeper into the Earth as it moves to the east, it also gets closer to being directly beneath the population centers of western Washington.

The Nisqually earthquake in 2001, which occurred beneath the Nisqually River delta near Olympia, measured magnitude 6.8, while the 1949 earthquake, also near Olympia, measured 7.1. The 1965 earthquake between Seattle and Tacoma registered 6.5.

Western Washington also can encounter subduction zone earthquakes, which occur infrequently offshore where the two plates come together and could perhaps measure magnitude 9. There also are major faults, such as the Seattle fault, that typically produce much shallower quakes with more pronounced shaking, so a high magnitude could bring widespread damage.

The new understanding of the nature of earthquakes in the Wadati-Benioff zone means more work like the SHIPS experiment is needed farther south, "particularly in the area of the Nisqually delta, where we have experienced these large earthquakes," Crosson said. "That will help us to understand the effects of such earthquakes on the entire region."


For more information, contact Preston at 775-784-1684 or preston@ess.washington.edu; Creager at 206-685-2803 or kcc@ess.washington.edu; Crosson at 206-543-6505 or crosson@u.washington.edu; Brocher at 650-329-4737 or brocher@usgs.gov; or Tréhu at 541-737-2655 or trehu@coas.oregonstate.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>