Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic and Antarctic Sea Ice Marching to Different Drivers

11.11.2003


Average Arctic Sea Ice Extent in September, 1973 to 1976

These figures show averages of Arctic sea ice extent for four Septembers, from 1973 to 1976. Credit: Don Cavalieri, NASA GSFC


Average Arctic Sea Ice Extent in September, 1999 to 2002



These figures show averages of Arctic sea ice extent for four Septembers, from 1999 to 2002. Credit: Don Cavalieri, NASA GSFC


A 30-year satellite record of sea ice in the two polar regions reveals that while the Northern Hemisphere Arctic ice has melted, Southern Hemisphere Antarctic ice has actually increased in more recent years. However, due to dramatic losses of Antarctic sea ice between 1973 and 1977, sea ice in both hemispheres has shrunk on average when examined over the 30-year time frame.

This study presents the longest continuous record of sea ice for both hemispheres based primarily on satellites, and the longer reading already begins to highlight some new information about sea ice trends over time, like the fact that more recently the Arctic has been losing ice at a faster rate.

"If you compare the rate of loss in the Arctic for the last two decades, it is 20 percent greater than the rate of loss over the last three decades," said Don Cavalieri, lead author of the study, and a senior researcher at NASA’s Goddard Space Flight Center. The study appeared in a recent issue of Geophysical Research Letters.



Over 30 years, from 1972 to 2002, the Arctic sea ice cover decreased per decade by roughly the size of the state of Arizona, some 300,000 square kilometers (almost 116,000 square miles) per decade. However, between 1979 and 2002 the sea ice area shrunk by the greater rate of 360,000 square kilometers (139,000 square miles) per decade.

The greater rate of sea ice loss in the Arctic may be due to a general warming trend in the Arctic as well as the influence of long-term oscillations or other changes in atmospheric pressure systems, which could pull in more warm air from the south.

In contrast, there was a dramatic loss of Antarctic sea ice cover from 1973 to 1977, and since then the ice has gradually spread in area.

"The increase has been slow enough that it does not totally wipe out the earlier decreases," said Claire Parkinson, senior researcher at NASA’s Goddard Space Flight Center, and a co-author of the paper. Another co-author is Konstantin Y. Vinnikov, of the department of meteorology at the University of Maryland, College Park.

Overall, from 1972 to 2002, the Antarctic ice declined on average by 150,000 square kilometers per decade (almost 58,000 square miles).

In the Antarctic, the gradual advance of ice from the late 1970s may be related to long-term atmospheric oscillations in the Southern Hemisphere resulting in stronger westerly winds and cooler temperatures.

"Trying to explain why these things happen becomes tricky," said Parkinson. "The temperature connection where warmer temperatures lead to greater melt is reasonably direct, but far from the complete story. Winds and waves move ice around, and consequently the ice can move to places where it is warm enough that it wouldn’t have formed."

While the study represents the longest continuous record comparing the two polar regions, there was a major gap in the satellite sea ice data between early 1977 and late 1978. This gap was filled by maps of sea ice created from ship and other reports in polar areas and conveyed to the National Ice Center.

The study uses satellite data from NASA’s Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR), NASA’s Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), and the Defense Meteorological Satellite Program Special Sensor Microwave Imagers (SSMIs). The Nimbus 5 ESMR data covered from December 1972 to March 1977, with the Nimbus 7 SMMR combined with the Defense Program’s SSMIs picking up data from October 1978 to December 2002. For the year and a half in between 1977 and 1978, the researchers used data and maps from the National Ice Center.

"The National Ice Center all along created operational maps of sea ice cover to help ships in the region trying to navigate around or through the ice," Parkinson said. These maps, while not as comprehensive as satellite data, had to be created every week, using the best data available at the time. The researchers figured it was the most accurate data to bridge the gap between the satellite records.

Previously, NASA scientists had blended the SMMR and SSMI data sets together to generate a 20-year time series of sea ice extents from 1979 to 1998.

By having a 30 year record, the researchers have a much longer baseline to see the trends in both the Arctic and the Antarctic, and they can see seemingly unusual events like the rapid loss of ice in Antarctica in the mid-70s.

"It seems the two regions are responding to different hemispheric variations," said Cavalieri. "What remains is to sift out and understand how these variations are driving the sea ice in each hemisphere."

Contact: Krishna Ramanujan
Goddard Space Flight Center, Greenbelt, Md.
(Phone: 607/273-2561)


Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/feature/2003/1105ice.html

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>