Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese shipwreck adds to evidence of great Cascadia earthquake in 1700

31.10.2003


Evidence has mounted for nearly 20 years that a great earthquake ripped the seafloor off the Washington coast in 1700, long before there were any written records in the region. Now, a newly authenticated record of a fatal shipwreck in Japan has added an intriguing clue.



Written records collected from villages along a 500-mile stretch of the main Japanese island of Honshu show the coast was hit by a series of waves, collectively called a tsunami, on Jan. 28, 1700. Because no Japanese earthquake warned of the waves, it is likely they came from somewhere else around the Pacific Rim, said Brian Atwater, an affiliate professor of Earth and space sciences at the University of Washington and a U.S. Geological Survey geologist.

In the village of Kuwagasaki (now part of the town of Miyako) 300 miles northeast of Tokyo, the tsunami is believed to have crested at about 10 feet, destroying 13 houses and starting a fire that consumed additional houses. Records from five other towns lend more evidence for a tsunami generated by a magnitude 9 earthquake off the Washington coast on Jan. 26, 1700.


The shipwreck story is different from other accounts, said Atwater, who will present evidence of the incident Tuesday at the Geological Society of America annual meeting in Seattle.

"This is the only account that is nautical, and it is the only one in which the tsunami contributed to deaths," he said.

The ship carried 470 bales of rice, nearly 30 tons in all, bound for Edo (now Tokyo) from Nakamura-han, a feudal domain. The ship was loaded on Tuesday, Jan. 26, and had sailed about 100 miles down the coast by pre-dawn hours on Thursday. It was to enter a river at the town of Nakaminato, where the rice would be transferred to skiffs for the rest of the journey to Edo.

However, a series of then-puzzling waves sloshing into and out of the river on Thursday created conditions too treacherous for the ship to negotiate rocks just beyond the river’s mouth, so the crew kept the vessel anchored just offshore. Atwater likened the situation to the dangerous conditions that often accompany strong ebb tides across sandbars at the entrances to rivers, creeks and harbors.

"This was going on during the early morning hours," he said. "The boat stayed offshore all day. It seems the tsunami lasted 18 hours at least, and that’s another hint that the earthquake that caused it was very big."

By the time the waves subsided, a large storm was brewing. The tsunami had kept the ship from safe harbor, leaving it at the mercy of the storm. In the high wind and rough sea, the vessel broke loose from its anchor lines. The crew lightened the load by throwing half the rice overboard, but the storm drove the ship into coastal rocks, two crew members died and all the rice was lost.

An account of the disaster was published in a 1943 book about Japanese shipwrecks, but the source of the document wasn’t listed and the account was later met with some skepticism. However, in 2002 Kenji Satake, a Japanese geoscientist, found that the story had been collected as part of a Nakaminato municipal history, and he traced that account to a local family that had kept records of 131 shipwrecks between 1670 and 1832. The account matches well with the other records that supply evidence of the tsunami, Atwater said.

To judge the 1700 earthquake’s size, its estimated magnitude can be compared with those of the 20th century’s largest quakes – the 1952 Kamchatka earthquake at magnitude 9.0, the 1960 Chilean earthquake at 9.5 and the 1964 Alaskan earthquake at 9.2. The size of the 1700 tsunami in Japan implies that quake was in the range of 8.7 to 9.2, Atwater said, most probably about 9.0.

That quake is believed to have ruptured more than 600 miles of the boundary between the Juan de Fuca and North American tectonic plates, which meet off the Pacific Northwest coast in what is called the Cascadia Subduction Zone. Atwater has previously reported finding a variety of signs of such a large earthquake along the Washington coast, and has gradually pinpointed the event to 1700. The realization that such a large quake could happen again, he noted, has altered building codes and emergency plans in the Pacific Northwest.

At a magnitude of 9.0, the energy generated by the 1700 quake would have exceeded the total amount of energy currently consumed in the United States in a month, Atwater said.

"If you were to let a hurricane like Isabel, earlier this year, run for 70 days, the energy released in the winds would be equivalent to a magnitude 9 earthquake," he said.


For more information, contact Atwater at (206) 553-2927, (206) 543-1912 or atwater@u.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht The seismicity of Mars
25.02.2020 | ETH Zurich

nachricht Major wind-driven ocean currents are shifting toward the poles
25.02.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>