Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Sponging up Some Warmth Over Next 50 Years

04.09.2003


NASA’s improved global climate computer model, which simulates and projects how the Earth’s climate may change, indicates that the oceans have been absorbing heat since 1951 and will continue to absorb more heat from the atmosphere over the next 50 years. This increasing ocean heat storage suggests that global surface temperatures may warm less than previous studies projected, while the ocean acts as a bigger heat sponge. Further, such additional ocean heating would likely change regional climate patterns.


GLOBAL SEA SURFACE TEMPERATURES

This is an image of global sea surface temperatures taken from Japan National Space Development Agency’s (NASDA) AMSR-E instrument aboard NASA’s Aqua spacecraft on August 27, 2003. The colors in this false-color map represent temperatures of the ocean’s surface waters, ranging from a low of -2°C (28°F) in the darkest green areas to a high of 35°C (95°F) in the brightest yellow-white regions. Sea ice is shown as white and land is dark gray. CREDIT: NASDA/NASA



Shan Sun and James Hansen, both of NASA’s Goddard Institute for Space Studies, New York, NY, used NASA’s Global Climate Model (GCM), one of the world’s leading computer climate models that simulate past and potential future climate changes. The GCM has been enhanced with new "ocean models" that better simulate how oceans currently absorb heat and will respond to a warming global climate. The study appears in the latest issue of the American Meteorological Society’s Journal of Climate.

One of the leading reports on climate change, the Intergovernmental Panel on Climate Change (IPCC) report of 2001, suggests that between the years 1990 and 2100 the world’s average temperature will rise between 0.6 and 2.5 degrees Celsius (C) or 1.1 and 4.5 Fahrenheit (F). "The enhanced GCM shows that the average global temperature would rise between 0.4 and 1.2 C (between 0.7 and 2.2 F) through the year 2050, for plausible increases of greenhouse gases," Sun said.


Scientists measure ocean heat storage in Watts per meter squared, the rate of heating a square meter area. For example, a miniature Christmas tree bulb dissipates about 1 Watt of energy, so one bulb over every square meter would heat at a rate of 1 Watt per meter squared.

The enhanced GCM showed the world’s oceans were storing heat at a rate of about 0.2 Watts per square meter in 1951, and in the past 50 years, as atmospheric temperatures warmed, the rate of heat storage increased to about .75 Watts per square meter, capturing more heat from the atmosphere. "This increase in ocean heat storage shows that the planet is out of energy balance," Hansen said. "This energy imbalance implies that the atmosphere and ocean will continue to warm over time, so we will see continuing climate change."

It is important to know accurately how much heat oceans are storing, because the amount of heat stored provides a measurement of the Earths energy imbalance and indicates how much global temperature may increase in the future. It’s also important to see where heat is increasing in the world’s oceans, in order to predict climate changes in various geographical regions.

Sun and Hansen also looked at changes of precipitation and ocean currents, other factors that warmer world-wide waters may impact. If greenhouse gases continue to increase rapidly, the model projects significant ocean warming during the next 50 years in the Eastern Pacific Ocean, off the U.S. west coast, which could have biological consequences for ocean life.

The results also project increased precipitation and evaporation over the North Atlantic Ocean, increasing the fresh water in the region. An increase in freshwater has long been suspected as something that could weaken the northward transport of heat by the Atlantic Ocean, thus causing Europe to become cooler, even while the world becomes warmer. Sun and Hansen find, however, that the ocean circulation does not weaken significantly according to their model, so they expect no cooling effect on Europe.

More monitoring of ocean temperatures is needed to further the studies of ocean behavior. Ocean temperature readings currently do not reach full ocean depths, as is needed to increase the accuracy of future predictions.

With the new Ocean Models included in the GCM, if easurements of the amount of heat held by oceans are improved, it may be possible to begin to better quantify the Earth’s changing radiation imbalance and its causes with an accuracy of about one decade.

This study was funded through NASA’s Earth Science Enterprise under NASA’s Climate and Oceanography Programs. The mission of NASA’s Earth Science Enterprise) is to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards.

Rob Gutro | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0901oceansponge.html

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>