Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside geophysicist says triggered deep earthquakes provide insight into how such earthquakes get started

29.08.2003


Harry Green comments on a paper in Nature


Harry Green, Distinguished Professor of Geology and Geophysics in the Institute of Geophysics and Planetary Physics and the department of earth sciences at UC Riverside



In a commentary in the Aug. 21 issue of Nature, Harry Green, Distinguished Professor of Geology and Geophysics in the Institute of Geophysics and Planetary Physics and the department of earth sciences at UC Riverside, explains that two large, deep earthquakes (depth > 300 km below the surface of the earth) that occurred in Aug. 2002 in the Tonga subduction zone were causally related.

The Tonga subduction zone is approximately beneath the Fiji Islands in the Pacific Ocean. The two earthquakes were 300 km apart from each other and the difference in their depth was 65 km. Their magnitudes were 7.6 and 7.7.


In the commentary, Green sheds light on a paper by Tibi et al. also appearing in the Aug. 21 issue of Nature. Tibi et al. argue that the second large earthquake was triggered by the passage of seismic waves generated by the first earthquake.

“Tibi and colleagues’ observations are a major advance in understanding deep earthquakes,” Green said. “They might provide a new constraint on the mechanism by which these earthquakes begin. Their work provides a major piece of information as to how earthquakes get started, which may in the long run contribute to the prediction of damaging earthquakes that threaten people in California and elsewhere.”

The authors demonstrated for the first time remote triggering of one deep earthquake by another. “The Tonga earthquakes occurred only 7 minutes apart,” said Green. “Equally interesting, the triggered earthquake occurred in a place where no earthquakes have ever been recorded before.”

Green explained that the observations by Tibi et al. have significant implications for the physical process that initiates deep earthquakes. In the commentary, he outlines the three principal physical mechanisms that have been proposed by geophysicists to explain the initiation of deep earthquakes. “One of these observations can be ruled out by Tibi et al.’s observations,” said Green. “Moreover, we can use the recent seismological work of other researchers to show that one of the remaining two mechanisms is the most probable cause.” That mechanism is ‘phase-transformation-induced faulting,’ which Green and a graduate student discovered in 1989.

The UC Riverside Department of Earth Sciences offers the B.S. degree in geology and geophysics. These B.S.degree programs are designed for students with a strong interest in various aspects of the Earth sciences. The department offers the M.S. and Ph.D. in geological science. The department offers, too, a program built around the core research areas of organic and paleoenvironmental evolution, earthquake science and geodynamics, and quantitative Earth surface processes.

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=654
http://www.ucr.edu

More articles from Earth Sciences:

nachricht Solving the mystery of carbon on ocean floor
05.12.2019 | University of Delaware

nachricht Great Barrier Reef study shows how reef copes with rapid sea-level rise
05.12.2019 | University of Sydney

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>