Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tides control flow of Antarctic ice streams

22.08.2003



"My observations from a few years ago were that Ice Stream D in the West Antarctic was slowing to about half average speed and then speeding up," says Dr. Sridhar Anandakrishnan, associate professor of geoscience, Penn State. "I thought that the speeding up and slowing down was tied to rising and falling of the ocean tides."

The ice streams in West Antarctica move large amounts of ice downward from the center of the glacier toward the ocean. Most of the glacier rests upon bedrock and/or rubble on land, but part of the glacier floats above the ocean. The grounding line, the line where the glacier stops being grounded and floats, is quite a distance back from the leading edge of the glacier.


Some ice streams are moving rapidly, some are slowing down and others have completely stopped moving. Researchers have looked at a number of ice streams and recently, they discovered that Whillan’s Ice Stream exhibits the most bizarre behavior because it actually stops dead and then slips for a short time, moving large distances, before it stops again.

"We were astonished that a one meter tide variation can bring the ice stream to a halt in such a short period of time and that it can accelerate to full throttle in about one minute," says Robert Bindschadler, lead author of the study and a glaciologist and senior fellow at NASA Goddard Space Flight Center. "It underscores the sensitivity of the system to extremely modest forcing."

The researchers report in today’s (Aug. 22) issue of Science, that there is a clear association between this stick-slip phenomenon and the ocean tide.

Anandakrishnan and Bindschadler working with Richard B. Alley, Evan Pugh professor of geoscience, Penn State; Matt A. King, University of Newcastle, Newcastle Upon Tyne, UK, and Laurence Padman, Earth and Space Research, Seattle, combined data from various ice streams and produced a model of how the tides control the slip stick of ice stream motion. They note that "If there were no tides at all, slip events would be predicted to occur approximately every 12 hours."

However, the movement of the ice streams occurs every 18 and then 6 hours. That is, the stream remains still for 18 hours and then slips for 10 to 30 minutes and halts. Then 6 hours later, the stream slips again and halts. The first slip after 18 hours corresponds to just short of high tide and the second slip is when the tide is falling, but is not low.

"The up stream portion of the ice stream keeps moving all the time," says Anandakrishan. "The tide rises and puts pressure upward on the ice stream. Somewhere in the middle, the ice stream sticks."

Eventually the pressure being exerted on the ice stream bed from above is enough to overcome the sticking point and the stream slips and then halts. The tide continues to rise and then recede still putting pressure on the ice stream until once again the ice slips.

"The motion of the ice streams is not as regular during neap tide because the sea rise is not as high," says Anandakrishnan.

Each day the ocean by the West Antarctic has only one high tide and one low tide separated by 12 hours. The levels of the tides vary on a 28-day cycle creating spring tides of up to 5 feet and neap tides of 16- to 20-inches separated by 14 days.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Earth Sciences:

nachricht The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism
26.03.2019 | Geological Society of America

nachricht Mangroves and their significance for climate protection
26.03.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>