Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide record sheds light on glacial carbon dioxide

15.08.2003


A 106,000-year-long record of nitrous oxide concentrations and a shorter record of nitrogen and oxygen isotopes show that both marine and terrestrial nitrous oxide production increased in unison and effectively by the same proportional amount during the end of the last glacial period, according to Penn State researchers.



Equal terrestrial and marine production of nitrous oxide also suggest that increased storage of carbon in the oceans was not the cause of low atmospheric carbon dioxide during ancient glacial periods, the researchers report in today’s (Aug. 15) issue of Science.

“Nitrous oxide is a greenhouse gas, but there is so little of it in the atmosphere, that it hardly contributes to climate change through changes in the radiation budget,” says Dr. Todd Sowers, research associate in geosciences. “Changes in nitrous oxide loading can, however, provide clues about systems that control carbon dioxide in the atmosphere.”


Sowers, working with Dr. Richard B. Alley, the Evan Pugh professor of geosciences, and Jennifer Jubenville, former graduate student, looked at nitrous oxide from the Greenland Ice Core Project II ice core to catalog atmospheric nitrous oxide concentrations through time.

“This is a new record of concentration variations back this far, only a small portion had been done before” says Sowers. “We found a 40 percent increase in the concentration of nitrous oxide in the atmosphere as the Earth warmed at the end of the last glacial period.”

The concentration data alone shows how much nitrous oxide was in the atmosphere at any particular time. It cannot, however, suggest how much of that gas came from the oceans or land. The researchers also looked at an ice core from the Taylor Dome, Antarctica, to create a 30,000-year history of the isotopic composition of the nitrogen and oxygen in the nitrous oxide.

Bacteria on land and in the oceans produce nitrous oxide in one of two ways. Ocean bacteria tend to create nitrous oxide that has more of the heavier isotopes of nitrogen and oxygen, while terrestrial bacteria tend to produce nitrous oxide with the lighter atoms. By looking at proportions of isotopes in the trapped gases, the researchers could determine how much was made on land and how much in the oceans.

“Before we had the isotope records, common wisdom suggested changes in terrestrial emission were probably the major player responsible for the observed concentration changes,” says Sowers. “Our isotope data, however, show that both oceanic and terrestrial emissions changed in roughly the same proportion throughout the last 30,000 years.”

Carbon dioxide in the atmosphere hits lows during glacial periods and some researchers have suggested that increased productivity in the glacial oceans could have removed carbon dioxide from the atmosphere. If the oceans behaved as they do today, then increased oceanic productivity during the glacial period would have produced elevated oceanic nitrous oxide production. However, if the relationship between terrestrial and marine nitrous oxide did not change, then this cannot be an explanation for the low levels of carbon dioxide in the atmosphere during glacial periods.

“When we thought terrestrial emissions were the dominant control on atmospheric nitrous oxide concentrations, then this hypothesis could have been true,” says Sowers. “Now that we know that the land and oceans contributed equally, we have to look for another explanation for the low carbon dioxide levels.”

A’ndrea Messer | Pennstate Un iversity
Further information:
http://live.psu.edu/story/3770

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>