Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists rewrite laws of glacial erosion

14.08.2003


Glaciers, it turns out, aren’t so different from people – they can gain weight in their bottoms and be less active, scientists have discovered.



Glaciers, the heavyweights of landscape erosion, grow not just from snow accumulating on their surfaces but also from beneath by freezing of meltwater which can affect the rate at which they can erode, according to a team of scientists, including one from Michigan State University.

Their discovery, reported in a cover story in the Aug. 14 issue of the international science journal Nature, paints a new picture of how glaciers sculpture and erode the earth’s landscapes.


"Glaciers have a profound effect on the landscape, especially in mountainous regions, and this research allows us to understand how glaciers accomplish this," said Grahame Larson, a professor of geological sciences at MSU.

Larson was part of a team of scientists who made winter treks to Alaskan and Icelandic glaciers to understand how glaciers erode and transport sediment, research funded by the National Science Foundation and the Cold Regions Research and Engineering Laboratory in Hanover, N.H.

The researchers’ interest was sparked when they observed that fountains of meltwater rushing from some glacier margins spawned icy rims. They eventually were able to link this phenomenon of nature to the less lyrical but instantly identifiable event of creating ice when one pops open a can of very cold soda just pulled from an ice chest.

Larson explained that rapidly transferring ice-cold water from a high pressure environment – be it the inside of a can of soda or beneath a hulking glacier – to a lower pressure environment causes ice to form.

The soda-can effect gets a new name: glaciohydraulic supercooling. In the case of glaciers, this frazil ice forms when meltwater at the glacier bed rushes up a steeply rising slope. The new ice then clogs drainage ways at the glacier bed, dumping sediment, thus reducing the meltwater’s (and glacier’s) ability to erode. This action is called stabilizing feedback and results in the formation of a new dirty-ice layer along the glacier’s underbelly.

"This is new," Larson said. "We’re introducing laws of erosion for glaciers, and thus making it easier to understanding how glaciers subdue mountains."

Larson’s work at MSU helped to substantiate the theory of glaciohydraulic supercooling – he detected "bomb tritium," an isotope of hydrogen dispersed across the globe in the 1950s and early 1960s during nuclear testing, near the bed of some glaciers.

Under the old model of glacier building, tritium would be expected only near a glacier surface where snow slowly transforms to glacier ice. But Larson showed that tritium can also occur near the glacier’s base as the result of recent snowmelt refreezing due to glaciohydraulic supercooling.


In addition to Larson, the paper, "Stabilizing feedbacks in glacier-bed erosion," is authored by Richard Alley of Pennsylvania State University; Daniel Lawson of CRREL; Edward Evenson of Lehigh University in Bethlehem, Pa.; and Gregory Baker of the University of Buffalo.

Grahame Larson | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>