Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Location of Deep Convection May Exist in North Atlantic, Altering Views of Atmosphere-Ocean Interaction

18.07.2003


Deep convection, or mixing, of ocean waters in the North Atlantic, widely thought to occur in only the Labrador Sea and the Mediterranean, may occur in a third location first proposed nearly 100 years ago by the explorer and oceanographer Fridtjof Nansen. The findings, reported this week in the journal Nature, may alter thinking about the ocean’s overturning circulation that affects earth’s climate.



An international team of scientists reports in Nature that convection, a process that forms deep waters of the world’s oceans and plays a major role in the climate system, may also be occurring in the Irminger Sea east of Greenland because of a sporadic and localized atmospheric phenomenon known as the Greenland tip jet.

Lead author Robert Pickart of the Woods Hole Oceanographic Institution (WHOI) says the study places an additional complexity to the climate puzzle that must now be taken into account in observations and models, and that the implications of an additional source of Labrador Sea Water are far-reaching.


"I believe we found the smoking gun in the debate about deep water formation east of Greenland," Pickart says. "This study essentially ends a 100-year controversy, and I am convinced we will acquire the data from the ocean profiling system now in place in the Irminger Sea to prove it conclusively in the future."

The Labrador Sea and the Mediterranean have been thought to be the only locations where open-ocean convection leads to formation of deep water in the North Atlantic to depths of 1500-2000 meters. Polar air blows across Canada during the winter, removing heat over much of the Labrador Sea and causing the surface layers to sink and mix into deep waters. New evidence rekindled interest in Nansen’s idea that a large amount of Labrador Sea Water may actually be formed outside the Labrador Sea in the Irminger Sea.

A recent study by atmospheric scientists focused attention on a phenomenon known as the Greenland tip jet, a narrow, sporadic atmospheric jet that develops off of Cape Farewell when high-level northwesterly winds descend on the eastern or leeward side of Greenland and accelerate as they drop down over the ocean, drawing cold air over the southern Irminger Sea in a relatively small area. Pickart’s team, consisting of WHOI colleague Mike Spall and researchers at the Danish Meteorological Institute, University of Toronto, and Colorado Research Associates Division recognized that this was likely the cause of deep convection in the Irminger Sea. They pulled together corroborating evidence from atmospheric models, meteorological data, remote sensing fields, and oceanic modeling in order to make their case.

Nansen first proposed the idea nearly 100 years ago but much debate and controversy followed in the scientific literature and the notion was never embraced by the oceanographic community. Pickart knew nothing of Nansen’s forgotten theory until a few years ago when he gave a lecture about the "new" idea, and was told by a Norwegian scientist that it had been proposed but discounted decades ago. Intrigued as to why the idea died out, he hired a German translator and reviewed many journal articles for evidence. He is currently working on a popular science book on the demise of Nansen’s hypothesis.

Pickart and colleagues may be able to finally prove the idea with a new ocean profiling system deployed in the Irminger Sea three years ago. Pickart will head to sea in late July to recover and redeploy the instrument for another year, and a five-year deployment is planned by Institution colleagues starting in 2005.

About WHOI

WHOI is a private, independent marine research and engineering, and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>