Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of sea salt to help climate modeling

04.07.2003


Study clarifies key chemical reaction in atmosphere

While a breeze over the ocean may cool beach goers in the summertime, a new scientific study has revealed that tiny sea salt particles drifting into the atmosphere participate in a chemical reaction that may have impacts on climate and acid rain.
The research, published in the July 3 online issue of Science Express, could have substantial implications for increasing the accuracy of climate models.


The study by scientists at the Department of Energy’s Pacific Northwest National Laboratory and the University of California, Irvine indicates that sea salt plays an important role – but one previously little understood -- in the chemistry of sulfur in the atmosphere. One form of sulfur – sulfur dioxide – is a byproduct of burning fossil fuels containing sulfur. It is also formed when naturally emitted sulfur-containing compounds react in the atmosphere. In the air, sulfur dioxide is converted to sulfuric acid, a major component of acid rain and a contributor to haze in the atmosphere. These haze particles can affect clouds, which play an important role in climate.

For years climate experts have struggled to capture the effects of sulfur chemistry in climate models. The PNNL-UCI study provides a new understanding of sea salt’s role in atmospheric chemistry that will allow scientists to better predict and capture that information in models used to predict climate change.

"Our studies indicate that sea salt particles will absorb more sulfur dioxide and convert it to sulfuric acid more rapidly than previously thought," said Barbara Finlayson-Pitts, a professor of chemistry at UC-Irvine and a foremost expert on atmospheric chemistry who participated in the study while on sabbatical at PNNL. "The chemistry discovered in these experiments is not currently included in models of sulfuric acid formation in air, but could help to resolve discrepancies between model predictions and measurements of sulfur dioxide and sulfuric acid, which is essential for understanding the role of these compounds in acid deposition and global climate."

The importance of sea salt shouldn’t be underestimated, said Alexander Laskin, first author of the Science Express paper and senior research scientist at PNNL. With nearly three-quarters of the earth’s surface covered by water, a considerable number of sea salt particles enter the lower atmosphere and, given their minute size, can be carried long distances.

In the lab, the team of scientists simulated an ocean spray in which wind carries tiny sea salt particles into the atmosphere. They then exposed the salt particles to three important elements found in the atmosphere -- ozone, water vapor and light. The reaction caused the salt particles to change from neutral to a base.

"Climate modelers have assumed that the sea salt particles rapidly become acidic in the atmosphere and therefore their climate impact was underestimated," Laskin said. "We now know that under certain conditions they remain basic during the day and therefore their role must be reconsidered."

The team went on to theorize that when the sea salt particle is a base, it would be able to absorb substantial amounts of sulfur dioxide, and convert it to sulfuric acid in the particles.

"We’re providing a new fundamental understanding of atmospheric chemistry that allows climate models to more accurately consider the role of sea salt in climate change," he said. "The basic chemistry is crucial to understand if we want to accurately predict warming on a regional or global scale."

In the experiments, the team used table salt rather than sea salt because it accounts for 90 percent of the compounds found in sea salt. They utilized a computer-controlled scanning electron microscope and time-of-flight secondary ion mass spectrometer housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a scientific user facility located at PNNL. Equipment in EMSL (www.emsl.pnl.gov) is available to outside users on a competitive proposal basis.


This research was funded by the Department of Energy’s Office of Biological and Environmental Research and by the National Science Foundation. Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science facility that is gaining new knowledge through fundamental research and providing science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL for the federal government since its inception in 1965.


Staci Maloof | EurekAlert!
Further information:
http://www.pnl.gov/news/index.html
http://www.eurekalert.org/pub_releases/2003-07/www.emsl.pnl.gov

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>