Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internal waves appear to have the muscle to pump up mid-lats

25.06.2003


When internal waves up to 300 feet first form they cause a mighty churning of ocean waters – something invisible to and unfelt by anyone at the surface.


Maps, the first of their kind, show energy of internal waves carried away from where they originated. The larger and longer the arrows (vectors) the more energy is being carried away from where the waves originated. The upper map shows that, in general, internal waves generated by storms move through the ocean depths toward the mid-latitudes. The lower maps shows energy moving directly away from places where tidal forces have created internal waves.Graphic credit required: University of Washington/Nature



Now in a novel use of mooring data, some of it three decades old, a University of Washington researcher has calculated just how much punch these waves appear to carry as they travel, or propagate, thousands of miles from where they originate.

It’s energy that appears to be crucial to the conveyor-belt-like circulation wherein millions of cubic meters of icy-cold water sink each second at high latitudes and are driven to upwell at lower latitudes. Without such upwelling, global ocean circulation would stall, causing the entire ocean to fill with cold water. Further, nutrients that have drifted down to the ocean depths would remain in the deep instead of being carried back to surface waters for use by plankton, the tiny plants and animals on which all other marine life depend and which greatly affect how much carbon dioxide is absorbed and released by the oceans.


Internal waves are just like waves one sees breaking on beaches except they occur completely below the surface. For the most energetic such waves, which get started either during stormy weather or when tides pull water across especially rough places on the seafloor, up to 50 percent of their original energy can be carried far away as the waves undulate through the ocean depths, according to Matthew Alford, an oceanographer with the University of Washington’s Applied Physics Laboratory.

That’s important because climate modelers need to know all the key factors that affect ocean mixing that occurs at mid-latitudes. Previous measurements and calculations by Alford, and by National Aeronautics and Space Administration and Oregon State University scientists, show that internal waves have the 2 trillion watts that would account for such ocean mixing.

Alford provides the first glimpse of how much of that energy actually makes it very far from where the waves originate.

"The fluxes . . . are large enough to transport, across ocean basins, globally significant amounts of energy available for mixing," Alford wrote in the journal Nature last month. "Global mapping of their fluxes is an important step in determining how and where internal-wave mixing is accomplished."

Alford, an Office of Naval Research Young Investigator, combed historical data from more than 1,000 moorings – some used for projects as far back as 1973. Sixty had instruments at the right depths and collected data for long enough, at least a winter, for Alford’s purposes. Moorings provide fair coverage of ocean waters in the North Atlantic and Pacific but very poor coverage in low latitudes in the Southern Hemisphere, he says, something that could be considerably improved by deploying several well-placed moorings in the future.

He found that the kind of internal waves caused by tidal forces pulling water across underwater ridges, shoals, channels and other rough places on the seafloor, for example around the Hawaiian Islands, carry 30 percent to 50 percent of their energy directly away from their sources, a process that goes on year-round.

A second type of internal waves, one caused by sudden wind events and storms, appear to carry at least 15 percent to 20 percent of the energy input from where they originate, mainly during the stormy months of winter, and that energy is usually directed toward mid-latitudes areas. Alford says the focus in recent years has been on the importance of internal waves generated by internal tides, whereas his work suggests that internal waves generated by winds are just as significant.


###
For more information: Alford, 206-221-3257, malford@apl.washington.edu

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>