Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Space Shuttle Exhaust Creates Night-Shining Clouds

04.06.2003


Exhaust from the main engines of NASA’s space shuttle, which is about 97 percent water vapor, can travel to the Arctic in the Earth’s thermosphere where it forms ice to create some of the Earth’s highest clouds that literally shine at night, according to a new study led by the Naval Research Laboratory and jointly funded by NASA and the Office of Naval Research.


This image shows the launch of space shuttle STS-85 on August 7, 1997. The orange external tank contains over 700 metric tons of liquid hydrogen and liquid oxygen. The main effluent is water. The Stevens et al. results show evidence that this water was transported to the Arctic where it formed a vast region of polar mesospheric clouds covering an area about 10% of North America. Credit: NASA


Because of their high altitude, near the edge of space, noctilucent clouds shine at night when the Sun’s rays hit them from below while the lower atmosphere is bathed in darkness. They typically form in the cold, summer polar mesosphere and are made of water ice crystals. Credit: Naval Research Laboratory, Washington, D.C.



The thermosphere is the highest layer in our atmosphere, occupying the region above about 55 miles (88 kilometers) altitude. The clouds settle to 51 miles (82 km) altitude in the layer directly below called the mesosphere. The stratosphere and the troposphere lie in that order below the mesosphere.

Dr. Michael H. Stevens, the paper’s lead author and a research physicist at the Naval Research Laboratory in Washington, reports that exhaust from the shuttle and other launch vehicles may help explain how some of these mysterious clouds are formed. The paper appeared on Saturday (May 31) in Geophysical Research Letters.


Noctilucent clouds, sometimes called polar mesospheric clouds when observed from space, are too thin to be seen by the naked eye in broad daylight. However, they shine at night when the Sun’s rays hit them from below the horizon while the lower atmosphere is bathed in darkness. They typically form in the cold, summer polar mesosphere and are made of water ice particles.

The study uses data from the Naval Research Laboratory’s Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) instrument, launched on the shuttle for eight days of observation in August, 1997. MAHRSI allowed scientists to follow the plume’s rapid pole-ward transport and then to observe a discrete region of ice clouds as it appeared in the Arctic near the end of the mission. Stevens and colleagues find that the water contained in these clouds is consistent with the amount injected into the thermosphere by the shuttle on its ascent off the east coast of the United States.

“This study is important because it shows that there is a new source of water ice for the polar upper atmosphere,” said Stevens, lead scientist for MAHRSI. “Our results indicate that the water vapor released by launch vehicles can end up in the Arctic mesosphere.”

About half of the water vapor exhaust from the shuttle’s main fuel tank is injected into the thermosphere, typically at altitudes of 64 to 71 miles (103 to 114 km). Stevens and colleagues found that this water vapor can then be transported all the way to the Arctic in a little over a day, much faster than predicted by models of atmospheric winds. There is currently no explanation for why the water moves so quickly.

Stevens and colleagues also include observations from a ground-based experiment in Norway measuring water vapor moving toward the Arctic Circle. These observations reveal the passage of a large plume of water vapor overhead a little over a day after the same (STS-85) shuttle launch, confirming the plume trajectory inferred from the MAHRSI measurements.

As the water vapor moves to the Arctic it falls from the warmer thermosphere down to colder areas in the mesosphere. Over the North Pole in the summer mesospheric temperatures can plummet below minus 220 Fahrenheit (minus 140 Celsius), the lowest found in the Earth’s atmosphere. At these temperatures, water vapor condenses into ice particles and clouds form.

“The amount of water found here is tiny compared to the amount in the lower atmosphere,” Stevens said. “But the long term effects in the upper atmosphere have yet to be studied.”

The Office of Naval Research and NASA’s Office of Space Science funded the study.

Krishna Ramanujan | NASA Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0522shuttleshine.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>