Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic probe for rocks, recordings, nanotechnology

15.05.2003


A technique for studying the magnetic properties of rocks developed by earth scientists at UC Davis is drawing attention from other scientists and the magnetic recording industry.



An international group of scientists recently met in Davis to discuss the First Order Reversal Curve (FORC) method and its applications for studying million-year old rocks, thousand-year old lake sediments, modern hard drives and wholly new kinds of materials made in the lab.

Magnetic materials are made up of grains that act as tiny magnets. The size and orientation of these grains determines the magnetic properties of the whole material. Magnetic tapes and hard drives use those magnetic grains to store information.


The FORC method involves subjecting materials to a series of switching magnetic fields. How they respond gives information about the size, orientation and behavior of magnetic grains in the material.

Rocks store magnetic information for millions of years, said UC Davis geophysicist Ken Verosub, who with physicist Christopher Pike and geologist Andrew Roberts (now at the University of Southampton, England) originally developed the method.

Grains in rocks are magnetized by the Earth’s magnetic field. When the Earth’s field changes, some of the grains may change orientation, Verosub said. On a more recent timescale, changes in climate over thousands of years leave magnetic traces in the sediment on the floor of ancient lakes and seas.

FORC helps geologists understand how these magnetic signals are recorded in rocks and sediments. It also provides information about magnetic interactions between grains which could be useful for developing better hard drives and magnetic storage devices.

Verosub and Pike have joined with physicists Kai Liu, Richard Scalettar and Gergely Zimanyi to explore these new applications of the method. Scalettar, Zimanyi and Pike are using simulations and computer modeling to investigate the underlying physics behind the method.

Liu uses FORC to study novel materials, called nanomaterials because they are made up of extremely small layers, dots or other structures, that he makes in the lab. Such materials have novel properties compared to bulk materials because of their extremely small dimensions.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>