Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite measures Earth’s carbon metabolism

24.04.2003


In honor of the Earth Day celebration, NASA scientists unveiled the first consistent and continuous global measurements of Earth’s "metabolism." Data from the Terra and Aqua satellites are helping scientists frequently update maps of the rate at which plant life on Earth is absorbing carbon out of the atmosphere.



Combining space-based measurements of a range of plant properties collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) with a suite of other satellite and surface-based measurements, NASA scientists produce composite maps of our world’s "net primary production" every 8 days. This new measurement is called net production because it indicates how much carbon dioxide is taken in by vegetation during photosynthesis minus how much is given off during respiration. Scientists expect this global measure of the biological productivity of plants to yield new insights into how the Earth’s carbon cycle works, a critical step toward solving the climate change puzzle.

The rate of carbon fixation through photosynthesis is a basic property of life on planet Earth. It is the basis for capturing and storing the energy that fuels our world’s living systems and forms the foundation of the food webs. The oxygen we breathe is a byproduct of this photosynthesis. According to its creators, these new net primary productivity maps provide a fascinating new insight into the intimate connection between the living world and the physical world.


"We are literally watching the global garden grow," says Steve Running, MODIS Science Team member and director of the Numerical Terradynamic Simulation Group at the University of Montana. "We now have a regular, consistent, calibrated and near-real-time measure of a major component of the global carbon cycle for the first time. This measure can also be the basis for monitoring the expansion of deserts, the effects of droughts, and any impacts climate change may have on vegetation growth, health, and seasonality."

On land, notes Running, photosynthesis is the foundation for agricultural crop production, rangeland grazing capacity and forest growth. "We also anticipate that our new productivity maps should help to significantly improve analysis of global crop commodities."

The new maps show that the highest mid-summer productivity rates are found at temperate latitudes with mild climates and not at tropical latitudes, as some might have expected. However, tropical forests are more productive over a full year because of their longer growing season. Viewing the global maps sequentially in a 2-year movie reveals some fantastic seasonal cycles of plant growth, especially at high latitudes across North America, Europe, and Asia. The movie also reveals the almost immediate response of land plants to changing daily weather patterns.

However, plant life in the ocean is somewhat more buffered and therefore not as directly driven by weather patterns, states Wayne Esaias, biological oceanographer at NASA’s Goddard Space Flight Center. The growth of microscopic marine plants (phytoplankton) in the ocean responds more to seasonal changes-currents, temperature, and sunlight. So, whereas certain areas on land will swing abruptly from very low to very high rates of photosynthetic activity, biological productivity in the ocean is ongoing steadily and is spread over much wider areas.

"It doesn’t surprise Earth scientists, but the public might be surprised to learn that there is so much photosynthesis in the oceans," observes Esaias. "When you average the productivity rates over the whole world, the ocean is roughly equal to the land."

Esaias is examining how plant productivity rates in the ocean vary in response to changes in the ocean’s current patterns. In particular, he says, these new primary productivity maps will help fisheries scientists understand why there are good catches some years and poor catches in others.

For the last two decades, using data from earlier satellite sensors, scientists have been able to map global concentrations of chlorophyll, the green pigment marine and land plants use for photosynthesis. But it was still a leap for scientists to estimate how much carbon was converted to organic material by plants-a measure now routinely provided by the net primary productivity maps.

The new MODIS maps mark a major milestone in the careers of both Running and Esaias-a milestone they have been working toward for more than 20 years. "As Earth systems science began in the 1980s, ecology was way behind the atmosphere and oceans disciplines in achieving a global perspective because our training was on single organisms (i.e., dissecting frogs and counting dandelions), so we had no global-scale theory or measurements," states Running. "But this new measurement attests that ecology is now catching up in global science."

Esaias adds that this is just the first cut and there is much work left to do to refine their maps. "The world is a big place and we are only just beginning to fully understand and validate what we see in our data around the globe and over time. We know we can make improvements in some areas, but it is good to now have the global context to pull together research that is being done locally in various regions around the world."

Launched in December 1999 and May 2002, Terra and Aqua are the flagships of the Earth Observing System series of satellites and a central part of NASA’s Earth Science Enterprise. The mission of the Earth Science Enterprise is to help us understand and protect our home planet.

David Herring | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>