Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA ties El Niño induced drought to record air pollution from fires

03.04.2003


Fires in West Africa The West Africa biomass burning season that began in November 2002 is still underway in late March 2003. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from the Aqua satellite on March 24, 2003, shows scores of fires (in Red) heavily concentrated in Sierra Leone, with other fires scattered across Guinea (top) and Liberia (bottom right). The high-resolution image provided above is 500 meters (3/10ths of a mile) per pixel. CREDIT: Jeff Schmaltz, MODIS Rapid Response Team, NASA GSFC


Scientists using NASA satellite data have found the most intense global pollution from fires occurred during droughts caused by El Niño. The most intense fires took place in 1997-1998 in association with the strongest El Niño event of the 20th century.

Bryan Duncan, Randall Martin, Amanda Staudt, Rosemarie Yevich and Jennifer Logan, from Harvard University, used data observed by NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite to quantify the amount of smoke pollution from biomass burning over 20 years.

"It’s important to study biomass burning, because those fires produce as much pollution as use of fossil fuels. Most of the pollution from fires is produced in the tropics, while pollution from fossil fuel use occurs in North America, Europe and Asia," Logan said.



One of the missions of NASA’s Earth Science Enterprise, which partially funded the research, is to learn how the Earth system responds to natural and human-induced changes, such as droughts and worldwide fires caused by El Niño. NASA’s Goddard Space Flight Center, Greenbelt, Md, developed the smoke data, the unique Aerosol Index product from the TOMS satellite.

The Harvard scientists recently published a study in the Journal of Geophysical Research ­ Atmospheres that describes how they combined the Aerosol Index data from TOMS with Scanning Radiometer and Sounder (ASTR) fire count data from the European Space Agency’s European Remote Sensing-2 satellite.

The study assessed the effects of the 1997-1998 El Niño events on global biomass burning. They concluded biomass burning around the world was unusually high during the 1997-1998 El Niño, greater than in any other period between 1979 and 2000. The amount of carbon monoxide emitted in 1997 and 1998 was about 30 percent higher than the amount emitted from worldwide motor vehicle and fossil fuel combustion.

"We found that fires typically produce the most pollution in Southeast Asia in March, in northern Africa in January and February, and in southern Africa and Brazil in August and September," Logan said. During the El Niño of 1997-1998, Indonesia, Mexico, and Central America experienced extreme droughts, and forest fires raged out of control.

The smoke from the fires in Mexico and Central America was blown northward in May 1998, worsening air-quality and reducing visibility over much of the eastern United States. The fires in Indonesia burned tropical forests over an area equivalent to the size of southern New England and released enormous amounts of pollutants. The team estimated the Indonesian fires produced about 170 million metric tons of carbon monoxide, which equals about one-third of the carbon monoxide annually released from fossil fuels.

Biomass burning is the combustion of both living and dead vegetation. It includes fires generated both by lightning and human activity. Humans are responsible for about 90 percent of biomass burning, with only a small percentage of natural fires contributing to the total amount of vegetation burned.

Rob Gutro | NASA / Goddard Space Flight Cent
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0328drought.html
http://toms.gsfc.nasa.gov/
http://www.elNino.noaa.gov/edu.html

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>