Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Encrustation provides clues about ancient seas

25.03.2003


David L. Rodland, a Ph.D. student in Virginia Tech’s Department of Geological Sciences, has been studying encrustation, or the colonization of seashells by other marine organisms that live permanently attached to hard surfaces.



Examples of encrusting organisms (or epibionts) include serpulid and spirorbid worms, bryozoans, barnacles, and algae. Many epibionts produce their own calcareous tubes, shells, or skeletons, which are attached to that surface and may become fossilized along with it. "The encrustation of seashells by epibionts provides a great deal of ecological data or, for fossils, paleoecological, data," Rodland said. "You can count the number and diversity of epibionts on a shell, for example, and see how it changes as a function of shell size. Or you can examine how encrustation varies between different kinds of shells or between the shells collected at different places and under different environmental conditions. Some workers have even suggested that they could be used to estimate the amount of nutrients and plankton available in ancient seas."

At the meeting of the Southeastern Sections of the Geological Society of America (GSA) in Memphis March 12-14, Rodland presented a comparison of the encrustation of a bivalve mollusk (Macoma) with the encrustation of an articulate brachiopod (Bouchardia) from the coast of Brazil. "This is the only tropical / subtropical site where both bivalves and brachiopods occur in abundance in the present day, or at least, the only one we know," Rodland said. "Brachiopods were a common element in Paleozoic fossil beds (>250 million years ago) and so this is the first opportunity we really have to compare brachiopods and bivalves in the modern world."


"As it turns out," he said, "epibionts appear to preferentially colonize the brachiopod Bouchardia, and occur less frequently on the bivalve Macoma. There are a large number of different measures one can use to evaluate the degree of encrustation on a shell, but Bouchardia is always preferred. This may be in part because Macoma lives in the sand, while Bouchardia sits on the surface; but because storms periodically rework everything, some shells get brought back to the surface while others get buried, so they both get encrusted eventually. The composition of the shells may also make a difference to the organisms colonizing them; Macoma is aragonitic while Bouchardia is calcitic."

What does this mean? Bivalves are very common today, while brachiopods were much more common hundreds of millions of years ago, Rodland said. Therefore, differences in the encrustation of each may have implications for the evolution of the organisms that encrust them. "But no one really knows," he said, "because there has been next to no study of brachiopod encrustation, and no one has really compared brachiopods and bivalves in this way before. If you’re trying to measure changes in ocean nutrients through the fossil record of epibionts, this means you have to account for differences between the shells that are getting encrusted in the first place."

David Rodland | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>