Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upside-down underwater telescope to study visitors from space

18.03.2003


Scientists from the Universities of Sheffield and Leeds will soon be able to study some of the most elusive particles known to man, thanks to a giant telescope under the sea that looks down towards the centre of the Earth rather than up into the sky.



Together with fellow scientists from across Europe they are building a telescope 2400m (one and a half miles) under the Mediterranean Sea to detect neutrinos. These tiny elementary particles hardly exist at all, having no charge and almost no mass. Neutrinos zoom through the earth at almost the speed of light, travelling here from some of the most extreme regions of the cosmos. Understanding them will give us a new view of the Universe and may allow scientists to confirm the existence of dark matter. Dark matter is believed to make up some of the 90 per cent of the missing mass of the Universe that has never been detected.

The project, costing 20 million Euros, is the result of collaboration between 150 physicists and astronomers from sixteen European organisations.


The telescope will consist of ten 480m long strings fixed to the seabed, each with a weight at one end and a buoy at the other. Each string will have around 30 light detection photo-multipliers distributed along the entire length. The strings are connected, via a junction box on the seabed, to a 40km fibre optic cable, which relays information back to a base station on the south coast of France. Today the Nautille submarine has connected the first string to the cable using a robotic arm.

Dr Lee Thompson of the Physics and Astronomy Department at University of Sheffield is the UK project leader for Antares. He explains how the telescope works, "The photo-multipliers detect the light given off on the rare occasions when neutrinos interact with material (such as rock in the seabed or even seawater) and become muons. Muons are particles that are similar to electrons but heavier. When travelling through the water the muons give off a blue light, which the telescope will detect and record.

"Neutrinos have no charge so they always travel in a straight line. By following the path of the muons we will be able to determine where the neutrinos came from and discover the source of their creation.

"The reason that we need to build the telescope under the sea is that the water prevents muons from cosmic rays in the atmosphere from contaminating our study. By looking down the Earth also acts as a filter, as muons that haven?t been created from a neutrino will be absorbed before they can get into the study area."

Jon Pyle | alfa
Further information:
http://www.shef.ac.uk/uni/academic/N-Q/phys/research/pa/antares/faq.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>