Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Images from Space Spotlight Asian, Australian Pollution

07.02.2003


January pollution from China and Southeast Asia
Image courtesy the NCAR MOPITT team.


Bush fires in southeastern Australia
Image courtesy the NCAR MOPITT team


A visualization of satellite data captured and processed January 1–20, 2003, by scientists at the National Center for Atmospheric Research (NCAR) shows heavy pollution from China and Southeast Asia blowing out over the Pacific Ocean. The near-real time capability represented by the image is a breakthrough for NCAR team members working with the Measurements of Pollution in the Troposphere (MOPITT) instrument aboard NASA’s Terra satellite.

The image shows levels of carbon monoxide (CO) in a region where pollution tends to begin increasing around January and continue rising through the spring. The sources include emissions from motor vehicles and industrial activities, the burning of wood and other vegetation for heat, and fires set to clear land for agriculture. Scientists are using satellite measurements along with data gathered in field campaigns to begin to untangle the different pollution sources.

In a second image, pollution from bush fires burning in southeast Australia is clearly visible. The data were captured above the fires January 15–20. The image shows levels of CO released by the fires. Because CO persists in the atmosphere for several weeks, it can be used to trace the path of pollution plumes above the fires as the plumes drift out thousands of miles into the usually pristine air over the southern Pacific Ocean.



"We’re very pleased to unveil this new ability to provide images very soon after the satellite observations are made," says John Gille, NCAR scientist and U.S. principal investigator for MOPITT. "This means our data can be helpful in pollution situations as they unfold."

CO gas is a pollutant in its own right and a useful tracer for others, such as ozone at or near ground level. CO can also be used to calculate the level of pollutant-cleansing chemicals in the atmosphere, such as the hydroxyl radical. When CO levels are high, the level of hydroxyl radical is usually lower and fewer pollutants are removed from the atmosphere.

"CO is involved in much of the chemistry of the lower atmosphere, and it’s now one of the few gases that we can measure from space, thanks to MOPITT," says NCAR scientist David Edwards. "The data give us a new window on chemical processes affecting the ability of the atmosphere to clean itself."

In the color images, the amount of CO mixed into a given quantity of air is represented as parts per billion by volume (ppbv). The concentrations range as high as 205 ppbv and as low as 50 ppbv. White areas indicate no data were collected, either due to lingering cloud cover or because the area falls in the gaps between MOPITT’s orbit-path views. MOPITT is a project of NCAR and the University of Toronto, with funding from NASA and the Canadian Space Agency.

Contact:

Anatta
UCAR Communications
Telephone: (303) 497-8604
E-mail: anatta@ucar.edu

Anatta | UCAR Communications
Further information:
http://www.ucar.edu/communications/newsreleases/2003/mopitt.html

More articles from Earth Sciences:

nachricht Typhoon changed earthquake patterns
02.07.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Groundwater protection on Spiekeroog Island - first installation of a salt water monitoring system
01.07.2020 | Leibniz-Institut für Angewandte Geophysik (LIAG)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>