Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic ’slinky effect’ may power aurora

17.01.2003


The spectacular aurora borealis displays that light up the northern nights could be powered by a gigantic "slinky" effect in Earth’s magnetic field lines, according to research performed at the University of Minnesota. Earth’s magnetic field resemble a slinky in that when "wiggled," it undulates in waves that travel down the field lines at speeds up to 25 million miles per hour. These waves can pass energy to electrons, accelerating them along the magnetic field lines toward Earth. When the electrons hit atoms in the atmosphere, the atoms become excited and produce the colors of the aurora. Using electric and magnetic field data and images from NASA’s POLAR satellite, the researchers showed that energy from such waves is sufficient to power auroras and that statistically, the waves occur in the same locations as auroras--in a ring around the poles. The work will be published in the Jan. 17 issue of Science.




"We don’t know exactly what wiggles the field lines, but similar processes could explain the heating of the solar corona [the sun’s atmosphere], the release of energy during solar flares and the acceleration of the solar wind [a stream of charged particles from the sun]," said physics associate professor John Wygant, second author of the study. "At the edges of sunspots, other researchers have actually seen magnetic field lines waving. Understanding how such waves are caused and how they transmit energy is important to unraveling the complex processes behind larger-scale particle accelerations that occur, for example, in jets of material being ejected from black holes at the centers of galaxies." The paper’s first author is Andreas Keiling, who headed the study while a doctoral student and, later, a research scientist at the University of Minnesota. He is now at the Center for Space Research on Radiation in Toulouse, France.

The ultimate source of energy for auroras is the solar wind. Flowing with the wind--which is mostly single protons and electrons--is a magnetic field that encounters Earth’s own field tens of thousands of miles above the planet surface. Earth is like a huge bar magnet, with magnetic field lines coming out near the poles, curving through space, and re-entering near the opposite pole. When the solar wind’s magnetic field sweeps by, it joins with some of Earth’s magnetic field lines and stretches them into space on the night side of Earth. The stretching energizes this part of the magnetic field until it suddenly "snaps" away from the solar wind and reconnects with Earth. This process, called reconnection, may send waves rippling through the magnetic field, like wiggling a slinky, said Wygant.


Energy from the waves then passes to electrons, sending them in beams along the magnetic field lines into the atmosphere. The color of the aurora depends on how deeply the electrons penetrate the atmosphere and which atoms they excite. Measurements of electrical energy at altitudes near 12,000 miles, where the electrons are accelerated, showed sufficient energy from the waves to power auroras, Wygant said.

Auroras also occur in south polar regions, where they are known as the aurora australis. Waves in the magnetic field lines are called Alfven waves, after Hannes Alfven, a Swedish physicist who helped found the field of plasma physics, said Wygant.

POLAR’s electric field measurements were performed by an instrument built by the University of California at Berkeley. Other authors of the paper are Cynthia Cattell, physics professor, University of Minnesota; Forrest Mozer, professor of physics, Berkeley; and Christopher Russell, professor of physics, UCLA. The work was supported by NASA.



POLAR satellite images of the auroral ring are at www1.umn.edu/urelate/newsservice/aurora.html.

Contacts:
John Wygant, (510) 642-7297 (Jan. 13 and 14), (612) 626-8921 (Jan. 15 and later)
Cynthia Cattell, (612) 626-8918 (until noon Jan. 15)
Andreas Keiling, 33 (0) 561 55 66 60 (Toulouse, France)
Deane Morrison, University News Service, (612) 624-2346


Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/
http://www1.umn.edu/urelate/newsservice/aurora.html

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>