Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitchhiking rocks provide details of glacial melting in West Antarctic

03.01.2003


Rocks deposited by glaciers on mountain ranges in West Antarctica have given scientists the most direct evidence yet that parts of the ice sheet are on a long-term, natural trajectory of melting.



The West Antarctic Ice Sheet has been melting and contributing water continuously to the ocean for the last 10,000 years and is likely to keep doing so, says John Stone, University of Washington associate professor of Earth and space sciences.

Measuring and understanding changes in the Earth’s ice sheets over the past few decades, and predicting their future behavior are major challenges of modern glaciology. But it is important to view these changes in the context of what’s been happening naturally over centuries and millennia. This work establishes a background pattern of steady decline in the West Antarctic ice sheet, Stone says. If melting continues at the same pace in future, the West Antarctic Ice Sheet – about 360,000 square miles, or about the size of Texas and Colorado combined – would melt away in another 7,000 years.


It is still unknown if that process is being speeded by human-caused warming of the oceans and atmosphere, Stone says, but because much of the bedrock beneath the ice is below sea level, the ice sheet could be particularly susceptible to any future thinning and warming of the oceans around its edges.

The ice sheet contains enough water to raise global sea level by about 5 meters, or 16 to 17 feet, but says Stone, lead author of a paper in the Jan. 3 issue of the journal Science. "A rapid melting event that released even a small faction of this amount could have disastrous consequences for coastal regions".

Previous research inferred the history of the ice sheet indirectly, from such things as changing beach levels or volcanic debris. In this study, the scientists gathered rocks deposited by glaciers on mountain peaks and dated them using a new technique that allowed them to track the thinning of the ice sheet over the last few thousand years. The scientists believe they have documented the retreating margins of the ice like never before.

A research grant and logistic support from the National Science Foundation made it possible for researchers to visit seven peaks in the Ford Ranges, a series of mountain ranges near the Ross Sea. The Ford Ranges are one of only a handful of places in West Antarctica where mountains protrude through the ice sheet.

Even the peaks of the Ford Ranges – some that now jut nearly half a mile above the ice surface – were buried by ice 10,000 years ago, only emerging after glaciers scraped down their flanks. In the process, the glaciers left behind time capsules of a sort: rocks ranging in size from bricks to boulders that hitched rides inside glaciers until the ice melted away, leaving the rocks stranded high and dry on the mountainsides.

As the covering layer of ice thinned and disappeared, the rocks were exposed to bombardment by cosmic rays, altering their isotopic makeup. Using a particle accelerator to count the cosmic ray-produced atoms in a rock allows scientists to determine its age and, as a result, the time the glacier and rock parted ways.

"In all cases we got very tight, consistent correlations of age with altitude, so we are able to track the margins of the ice sheet coming down the mountain sides with this approach," Stone says. The most surprising aspect is how recently the ice has thinned in West Antarctica. Ice sheets which once covered huge areas of North America and Europe had all but disappeared by 10,000 years ago. Deglaciation in West Antarctica had only just begun by that time. Hundreds of meters of ice have since disappeared, under climatic conditions very similar to the present day.

"The Ice Age never really came to an end in that part of the world," Stone says.


Co-authors on the Science paper are Gregory Balco and Seth Cowdery, University of Washington graduate students in earth and space sciences (Cowdery was an undergraduate at Colorado College when the work was done); David Sugden, professor of geography, University of Edinburgh, Scotland; Marc Caffee, associate professor of physics, Purdue University (he was with Lawrence Livermore National Laboratory when the work was done); Louis Sass, National Outdoor Leadership School (an undergraduate student at Colorado College when the work was done) and Christine Siddoway, professor of geology, Colorado College.


Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>