Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore researchers determine biosphere unaffected by geoengineering schemes

20.12.2002


Using models that simulate the interaction between global climate and land ecosystems, atmospheric scientists from the Lawrence Livermore National Laboratory have shown that compensating for the carbon dioxide "greenhouse effect" by decreasing the amount of sunlight reaching the planet (geoengineering) could create a more vigorous ecosystem while helping to curb global warming.



The study suggests that planetary-scale engineering projects to lessen the amount of solar radiation reaching the Earth’s surface will likely do little to prevent the effects of increased greenhouse gases on the terrestrial biosphere. In fact, plants could experience growth spurts.

In a paper entitled: "Impact of Geoengineering Schemes on the Terrestrial Biosphere," Livermore researchers Bala Govindasamy, Starley Thompson, Philip Duffy, Ken Caldeira and University of Wisconsin collaborator Christine Delire, modeled the impact on Earth’s land biosphere due to various schemes that would reduce the amount of sunlight reaching the planet’s surface. The research appears in the Nov. 26 online edition of Geophysical Research Letters.


"Our models show plant life getting a big boost from the carbon dioxide fertilization when atmospheric CO2 levels are doubled due to anthropogenic fossil fuel emissions," Govindasamy said. "We noticed that in a CO2-enriched world, the terrestrial biosphere was largely unaffected by decreases in surface solar radiation by a couple of percentage points through various geoengineering schemes."

In earlier research, scientists have maintained that greenhouse gases emitted from the burning of fossil fuels are one of the largest sources of global warming because they cause an increase in the amount of carbon dioxide in the atmosphere. Methods to reduce atmospheric carbon dioxide vary from storing it in the deep ocean to reducing the amount of sunlight reaching the planet (geoengineering) that could largely counteract the warming influence of more greenhouse gases.

"Critics suggested that ’turning down the sun’ could harm terrestrial ecosystems that depend on light for photosynthesis, but this new work shows that a change in solar flux to stabilize climate would have little effect on the terrestrial biosphere," Caldeira said. "In fact, turning down the sun a bit reduces evaporation and therefore gives the plants more water for photosynthesis so that they may actually grow better in a geoengineered world than they do today."

The researchers, however, strongly caution against adopting any geoengineering scheme because "there are many reasons why geoengineering is not a preferred option for climate stabilization." Among these are the risks of system failure and unpredictable responses of Earth’s climate system to large-scale human intervention ecosystems.

"First, geoengineering schemes impose a variety of technical, political and economic challenges. International consensus to develop and maintain the schemes would be difficult. Failure of a scheme could be catastrophic," said Govindasamy said. "CO2 fertilization could impact ecosystem goods and services not represented by our land biosphere model, such as plant species abundance and competition, habitat loss, biodiversity and other disturbances."

The LLNL-led group used a general circulation model coupled to a model of land vegetation to conclude that the change in solar flux needed to stabilize climate would have little effect on net primary productivity in land.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.


Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>