Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves in the atmosphere batter south pole, shrink 2002 ozone hole

10.12.2002


A greater number of large "planetary sized waves" in the atmosphere that move from the lower atmosphere into the upper atmosphere were responsible for the smaller Antarctic ozone hole this fall, according to NASA researchers. The September 2002 ozone hole was half the size it was in 2000. However, scientists say that these large-scale weather patterns in the Earth’s atmosphere are not an indication that the ozone layer is recovering.



Paul Newman, a lead researcher on ozone at NASA’s Goddard Space Flight Center, Greenbelt, Md., said that large scale weather patterns have an affect on ozone when large "planetary sized waves" move up into ozone layer. If the waves are more frequent and stronger as they move from the surface to the upper atmosphere, they warm the upper air. Such weather phenomena are known as "stratospheric warmings."

The stratosphere is an atmospheric layer about 6 to 30 miles above the Earth’s surface where the ozone layer is found. Ozone breaks down more easily with colder temperatures. A long wave or planetary wave is a weather system that circles the world. It resembles a series of ocean waves with ridges (the high points) and troughs (the low points).


Typically, at any given time, there are between one and three of these waves looping around the Earth. With more or stronger atmospheric waves, temperatures warm aloft. The warmer the upper air around the "polar vortex" or rotating column of winds that reach into the upper atmosphere where the protective ozone layer is, the less ozone is depleted.

Click here for an animation of the hole’s progression. (5.7 MB animation)
Newman said, "The Southern Hemisphere large scale weather systems are similar to the semi-permanent area of high pressure, which brought sunshine and dry conditions over much of the eastern United States during the 2002 summer." These large Southern Hemisphere weather systems generated more frequent and stronger planetary waves that caused a series of stratospheric warmings during the Southern winter. Scientists aren’t exactly certain why that happened. What they are certain of is that these waves warmed the upper atmosphere at the poles, and cut ozone loss.

"2002 was a year of record setting planetary waves in both frequency and strength," Newman said. As a result, the total area of the ozone hole over the Antarctic was just over 15 million square kilometers (km) (5.8 million square miles) in late September. The ozone hole was virtually gone by late-October, one of its earliest disappearances since 1988.

Comparatively, the 2001 Antarctic ozone hole was over 26.5 million km squared (10.2 million square miles), larger than the entire area of North America including the U.S., Canada and Mexico combined. In the year 2000, it was approximately 30 million km squared (11.5 million square miles). The last time the ozone hole was as small as it is this year was 1988, and that was also most likely due to large scale surface weather systems.

"This is an entirely different factor from chemicals in the atmosphere that affects the protective ozone layer," Newman said. The Montreal Protocol regulated chlorofluorocarbons (CFCs) in 1987, because of their destructive affect on the ozone layer. However, CFCs still linger in the upper atmosphere. "The main reason why the ozone hole is smaller this year than last is simply because of higher temperatures from these waves. Decreases of CFCs are only causing the ozone hole to decrease by about 1% per year." It could be an entirely different story next year, if similar weather systems are not in place.

The waves affect the atmospheric circulation in the Antarctic by strengthening it and warming temperatures, or weakening it and cooling temperatures. Colder temperatures cause polar clouds to form, which lead to chemical reactions that affect the chemical form of chlorine in the stratosphere. In certain chemical forms, chlorine can deplete the ozone layer. One theory is that greenhouse gases may be responsible for decreasing the number of waves that enter the stratosphere, which then thins the ozone layer.

The temperature of the polar lower stratosphere during September is a key in understanding the size of the ozone hole - and the temperature at that time is usually driven by the strength and duration of "planetary waves" spreading into the stratosphere.

Newman stressed that the smaller ozone hole this fall is not an indication that the ozone layer is recovering. He said it’s simply due to a change in global weather patterns for this year, and next year it may likely be as large as it was last year.

This poster, "The 2002 Antarctic Ozone Hole," will be presented at the American Geophysical Union Fall 2002 Meeting in the Moscone Convention Center, in Hall D on Friday, December 6, 2002 at 8:30 a.m. (Pacific Time) Session # A51B-0044.

Cynthia M. O’Carroll | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>