Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL geoscientist to present NAPL contaminant modeling advance at AGU Meeting

09.12.2002


DOE News Release Embargoed for release December 6, 2002 INEEL geoscientist to present NAPL contaminant modeling advance at AGU Meeting By modifying the mathematical theory describing the relationship between permeability, saturation, and pressure in a multiple fluid system, researchers can now more accurately predict the movement of non-aqueous phase liquid (NAPL) contaminants in the subsurface. New calculations account for residual NAPL that remains in the vadose zone-forming a long-term source for groundwater contamination, and also explain how part of this residue can be flushed into groundwater during rainstorms or flooding.



This research, funded through U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory’s Subsurface Science Initiative (SSI), supports the DOE’s mission in environmental science.

Hydrologist Robert Lenhard of the INEEL, has resolved a critical contamination modeling problem by refining current constitutive theory - theory describing relations among fluid relative permeabilities, saturations, and pressures. His new model predicts the distribution of residual NAPL based on the prior fluid wetting and drying cycles in the subsurface. Lenhard will present his work at the American Geophysical Union meeting in San Francisco, CA, on December 8, 2002 during the Hydrology session.


"If you run existing multiphase flow models long enough, the results show that NAPL will completely drain from a vadose zone, which is contrary to field and experimental observations" said Lenhard. Better constitutive theory is needed for developing accurate computer models. "The lack of well-founded constitutive theory may be the foremost element impeding the development of accurate predictive multiphase flow models," he adds.

Lenhard’s modeling advance represents a shift in researchers’ conceptual understanding of NAPL behavior by recognizing that some NAPL becomes immobilized in pore spaces or as thin films on soil solids. Nowadays, subsurface contamination by NAPLs is almost ubiquitous. As a result of DOE’s efforts to develop, test, manufacture, and maintain nuclear weapons for national security purposes, the DOE has very complex contamination problems with NAPLs that are denser than water. Additionally, an estimated 60 percent of Superfund (DOE, industrial and municipal) sites have NAPL contamination.

Lenhard and colleagues conducted pilot-scale (mesoscale) experiments in the laboratory to study how NAPLs behave under different conditions. NAPLs can move through the vadose zone as liquid, vapor, or carried along as dissolved droplets within a moving stream of water. His experiments indicate that residual NAPL will generate pulses of contamination during heavy rainstorms or flooding, especially at arid sites. A better understanding of how residual NAPLs contribute to contamination could influence environmental remediation choices.

Most NAPLs, such as fuels and degreasing solvents, are petroleum based. Predicting the movement of NAPLs in the subsurface is challenging because NAPLs can be either lighter or heavier than water and don’t mix with water. Light NAPLs accumulate above the water table, and can depress the water-saturated region. Heavy or dense NAPLs sink below the water table and are very difficult to locate and clean up.

In order to predict the subsurface movement of multiple fluids, it is very important to know how the fluids are distributed throughout the pore spaces. The sizes of the pores containing the fluids will affect how rapidly these fluids can move downward to groundwater. If the fluids contain compounds harmful to humans and the environment, then by knowing how fast and in what quantities these compounds will reach the groundwater, effective remediation strategies can be developed using computer modeling. Lenhard has spent much of his career developing new techniques for measuring subsurface NAPL behavior and developing mathematical models for describing multi-fluid flow constitutive theory, which is needed to predict the flow behavior of multiple fluids in porous media. He is a leader in multiphse flow constitutive theory and his models are used worldwide by many scientists to predict air-NAPL-water flow behavior.

Martinus Oostrum of the DOE’s Pacific Northwest National Laboratory, who has worked with Lenhard, plans to use Lenhard’s new methodology to enhance the accuracy of the STOMP model- a numerical computer program for predicting Subsurface Transport Over Multiple Phases (STOMP). It is expected that the improved computer model will be used to help address NAPL contamination at DOE sites. Lenhard is also interested in employing his constitutive models in other multiphase flow

Deborah Hill | INEEL
Further information:
http://www.inel.gov

More articles from Earth Sciences:

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

nachricht Earth's magnetic field measured using artificial stars at 90 kilometers altitude
14.11.2018 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>