Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collapse Area Can Be Predetermined

27.11.2002


Collapse in the mines can be foreseen in advance and the caving-in location and time can be identified. This has become possible due to the basic research carried out by scientists of the Ioffe Physical & Engineering Institute, Russian Academy of Sciences. Specialists of INTERUNIS company have undertaken to embody the above concepts in a prototype model of the device.

The system will consist of the ’’case on wheels’’ containing the computer and signal processing cards, and several sensors (16 sensors are planned to be installed in a test sample) connected to the computer by cables. The sensors will be immured in the walls of the mine or of any other underground depositary to be surveyed. The sensors catch elastic waves emitted by rock while breaking up, once a certain threshold value is reached, the device will produce danger warning and will indicate the exact location where the breaking-down is going to take place.

The researchers have proceeded from the fact that rock does not disrupt at an instant, the breaking-down is sometimes preceded by a lengthy period of strain accumulation. Initially, small bed joints are formed in different locations, the process can last pretty long, but when the bed joints become numerous, they immediately combine into large cracks and emit elastic waves of major energy - at this point, the process becomes critical. During major earthquakes, breakings dissect the earth surface and can be as long as several kilometers, but the way they are formed is similar to the one taking place underground. Therefore, the method of the threat area determination proposed by the physicists headed by professor Kuksenko is also applicable to forecasting major calamities.



Similar devices are being currently produced outside Russia, but such systems are intended for a narrow frequency band and can track the rock volume of 10 through 100 cubic meters. The Russian scientists are planning to develop a device which will analyze a wide band of waves and determine the break-up area at the distance of several kilometers. The device testing will be carried out in real-life environment: in a mine or an underground waste liquids depositary.

Tatiana Pitchugina | alfa

More articles from Earth Sciences:

nachricht Arctic sea ice decline driving ocean phytoplankton farther north
16.10.2018 | American Geophysical Union

nachricht Smaller, more frequent eruptions affect volcanic flare-ups
12.10.2018 | Michigan Technological University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>