Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural radioactivity used to determine seasonal changes in groundwater supply

22.11.2002


The discharge of groundwater to coastal waters represents an important source of dissolved nutrients and contaminants that may affect chemical and biological processes in coastal ecosystems. In a journal article published in a recent issue of Limnology and Oceanography, URI Graduate School of Oceanography chemical oceanographers Roger P. Kelly and S. Bradley Moran describe how they used radium isotopes as tracers to determine seasonal changes in groundwater input to the Pettasquamscutt estuary from June 1999 to June 2000.

Radioactive isotopes of the naturally occurring element radium have recently been used as tracers of groundwater input to coastal zones. None of these studies, however, have evaluated seasonal changes in groundwater input. Measuring seasonal changes, as opposed to total input over the course of a year, provides scientists and managers with a more accurate understanding of coastal ecosystems as well as information about the periods of greatest impact over the annual cycle.

The Pettasquamscutt estuary, locally known as the Narrow River, is located adjacent to Narragansett Bay in southern Rhode Island and discharges into Rhode Island Sound. The estuary is approximately 6.5 miles long and has an average depth of 6 feet. Previous studies of the Pettasquamscutt estuary have determined that up to 50% of the freshwater input may be from groundwater.



Radium isotopes in the groundwater of the Pettasquamscutt are derived naturally from the weathering of the underlying metasediment and granite bedrock within the watershed. Using a mathematical model that considers the exchange of water between the river and Rhode Island Sound, the amount of radium desorbed from particles suspended in the water, and groundwater supply, Kelly and Moran observed seasonal changes in groundwater input to the estuary by measuring the excess radium derived from groundwater.

They determined that groundwater input was highest in the summer, lowest in the winter, and intermediate in the spring and fall. Kelly and Moran also estimated the quantity of inorganic nitrogen and phosphorous supplied by groundwater. They speculate that seasonal changes in groundwater supply of these nutrients may influence the occurrence of phytoplankton bloom events in such coastal systems through the annual cycle.

"There is a real need for reliable data on groundwater supply as demands on fresh water reservoirs continue to increase," said Moran.



The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, and the National Sea Grant Library.


Lisa Cugini | EurekAlert!
Further information:
http://aslo.org/lo/toc/vol_47/issue_6/1976.pdf

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>