Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence that El Niño influences global climate conditions on a 2,000-year cycle

14.11.2002


Study by researchers from Syracuse University, Syracuse, N.Y., and Union College, Schenectady, N.Y., to be published in the Nov. 14 issue of Nature



El Niño, the pattern that can wreak havoc on climate conditions around the world, is like a beacon, pulsating through time on a 2,000 year cycle, according to a new study by scientists from Syracuse University, Syracuse, N.Y.; Union College, Schenectady, N.Y., and from the NOAA Paleoclimatology Program, Boulder, Colo., that is being published in the Nov. 14 issue of Nature.

The study, which resulted from a detailed analysis of a continuous 10,000-year record of El Niño events from a lake in southern Ecuador, is the first documented evidence that such a millennial cycle exists for El Niño. The researchers found that the frequency of El Niño events peaked about 1,200 years ago, or during the early Middle Ages. If the pattern continues into the future, there should be an increase in El Niño events in the early part of the 22nd century, the scientists say.


"El Niño operates within its own kind of 2,000-year rhythm, and because of that, we believe these periodic changes have had a major impact on global climate conditions over the past 10,000 years," says Christopher Moy G’00, the lead author of the study and a 2000 graduate of Syracuse University. "El Niño is one of the primary forces that can alter climate around the globe during a short period of time."

The study is the result of work Moy did as a graduate student in the Department of Earth Sciences in Syracuse University’s College of Arts and Sciences for his master’s thesis. His advisor was Prof. Geoffrey Seltzer. In a 1999 study published in Science, Seltzer and Donald T. Rodbell, who was Moy’s undergraduate advisor at Union College, discovered the first continuous record of El Niño events that dated back more than 5,000 years. That study was based on sediment samples taken in 1993 from the same lake in southern Ecuador--Lake Pallcacocha--as part of a larger global climate study on which they were collaborating.

This new study of El Niño events is based on another set of sediment cores taken in 1999 from Lake Pallcacocha, which is located in the Andes Mountains. The National Science Foundation funded the research.

Characterized by warm sea surface temperatures that appear off the western coast of South America, modern El Niño events cause dramatic changes in the weather systems across both the North and South American continents--from tumultuous rainfall in northern Peru and southern Ecuador to unusually warm and dry conditions in the northeastern United States.

Like the 1993 sediment core samples, the new core samples contain a series of light-colored sediment layers that contain the type of debris that would flow into the lake during periods of intense precipitation. In his analysis of the sediment layers, Moy confirmed results from the first study--that scattered El Niño events began about 10,000 years ago and steadily increased in frequency beginning about 7,000 years ago. In addition to that, he uncovered high-frequency clusters of El Niño events occurring on a 2,000-year cycle.

"About every 2,000 years, we see a lot of El Niño activity," says Moy, who is currently a graduate student at Stanford University and plans to pursue a Ph.D. in geology and environmental science. "This oscillation has not been seen in any other study of climate records of this area of the world, which makes this study unique. El Niño is an important part of our modern-day climate system. Likewise, our study shows it was also an important part of the earth’s climate system 7,000 years ago. Understanding the past will help us to better understand future climate changes."

Seltzer says that Moy’s study sheds new light on a tropical phenomenon that can radically alter climate conditions in a relatively short period of time. "We are extremely excited and pleased that the research Chris did as a Syracuse University graduate student is now being published in a premier, international journal and that he is moving toward greater accomplishments in the field. It’s the ultimate outcome for our program and of a student-centered research university like Syracuse University."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>