Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacific Ocean temperature changes point to natural climate variability

13.11.2002


Analysis of long-term changes in Pacific Ocean temperatures may provide additional data with which to evaluate global warming hypotheses.



"Abrupt changes in water temperatures occurring over intervals of up to 25 years suggest that global warming may result as much from natural cyclical climate variations as from human activity," said Benjamin Giese, oceanography professor in the College of Geosciences.

"Climate models constructed here at Texas A&M University were used to analyze ocean surface temperature records in the tropical Pacific since 1950. The results suggest that as much as one-half of all global surface warming since the 1970’s may be part of natural variation as distinct from the result of greenhouse gases,"


Giese and graduate student Amy J. Bratcher published the results of their analysis in the Oct. 8 issue of Geophysical Research Letters.

Surface air temperature records maintained over the past 120 years serve as the main evidence for hypotheses linking global warming to increased greenhouse gases generated by manmade (anthropogenic) causes. These records show the average global air temperature has risen by about one-half degree Centigrade over the last 50 years. But while the general air temperature trend seems to be undisputedly upward, this upward trend varies considerably.

"How much of this variability is attributable to natural variations and how much is due to anthropogenic contributions to atmospheric greenhouse gases has not yet been resolved," Giese said. "Recent studies indicate that it is difficult to separate intrinsic natural variance from anthropogenic forcing in the climate system."

Giese believes their analysis of tropical Pacific Ocean data indicates long-term upward changes in ocean temperatures precede global surface air temperature changes by about four years. These ocean temperature fluctuations are in turn preceded by an increase in subsurface water temperatures by about seven years.

"Thus, the results suggest that much of the decade to decade variations in global air temperature may be attributed to tropical Pacific decadal variability," Giese observed. "The results also suggest that subsurface temperature anomalies in the southern tropical Pacific can be used as a predictor of decadal variations of global surface air temperature."

For example, in 1976 an abrupt change in the temperature of the tropical Pacific Ocean preceded a rise of two-tenths of a degree in global air temperatures.

"This phenomenon looks like El Nino, but with a much longer time scale - El Nino occurs over a period of from nine to 12 months, but this fluctuation lasts for about 25 years," he continued. "In 1976, the ocean temperature change in question occurred very quickly, moving from cooler than normal to warmer than normal in about a year."

Bratcher and Giese report that now conditions in the tropical Pacific are similar to those prior to the 1976 climate shift, except with the opposite sign. If conditions develop in a similar way, then the tropical Pacific could cool back to pre-1976 conditions.

"The subsurface tropical Pacific has shown a distinct cooling trend over the last eight years, so the possibility exists that the warming trend in global surface air temperature observed since the late 1970’s may soon weaken," Giese observed.

"This natural variation would help to counter the greenhouse gas warming effect. In fact, careful study reveals that global warming and cooling has occurred in the past in cyclical patterns."

Giese’s work involves constructing computer models that incorporate years of weather data to reveal recurring patterns of oscillation and help identify mechanisms that may affect climate. He focuses on climate oscillations that are not directly forced by such things as changing amounts of sunlight, but instead are mechanisms of internal climatic variation for which scientists have as yet isolated no particular cause.

"Our model results terminated at the end of 2001," he said. "Now we’re waiting to see what their long-term effects may be on global temperatures.

"Our results don’t preclude the possibility that anthropogenic sources of greenhouse gases have contributed to global warming. We’re just suggesting that the human forced portion of global warming may be less than previously described."


###
Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Benjamin Giese, 979-845-2306, b-giese@tamu.edu.

Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>