Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DARE for planetary exploration

06.11.2002


Balloons outfitted with innovative steering devices and robot probes could be the future of planetary exploration. Dr. Alexey Pankine, a fellow at the NASA Institute for Advanced Concepts (NIAC), presented an analysis of balloon applications for planetary science at the World Space Congress in Houston, Texas last month. His study, entitled Directed Aerial Robot Explorers or DARE, is funded by NIAC.



At the center of the DARE concept are balloons that can float in planetary atmospheres for many days. Balloons have long been recognized as low-cost observational platforms and are routinely used in observations of the Earth’s atmosphere. In 1984, two balloons were successfully deployed in the atmosphere of Venus for a short mission. However, what has restrained the wider use of balloons in planetary exploration was the inability to control their paths in strong atmospheric winds. Attaching an engine to a balloon would convert it into an airship and make it too heavy, too power dependent and too expensive to send to another planet or high into the atmosphere.

Faced with this problem, Global Aerospace Corporation has proposed to use an innovative device called the StratoSail® that allows the user to control the path of a planetary balloon. The device is essentially a wing that hangs on a long tether (several kilometers) below the balloon. Strong winds and denser atmosphere at the wing altitude create a sideways lifting force that pulls the entire system across the winds.


The DARE concept analyzes the use of the StratoSail® device on several planets in our Solar System that have atmosphere – Venus, Mars, Jupiter and Titan (a satellite of Saturn). Dr. Pankine reports that a small, light wing will pull the balloon with a velocity of about 1 m/s across the winds on those planets. This may not seem much, but applied constantly (without consuming any power!) for the duration of a long mission (100 days) it would allow for pole-to-pole exploration of the atmospheres of Venus and Titan, and targeted observations of Mars and the vast Great Red Spot of Jupiter.

DARE platforms would carry high-resolution cameras and other instruments to study surfaces and atmospheres of the planets. Dr. Pankine envisions small probes being deployed from DARE platforms over a site of interest. These robot-probes would, for example, analyze atmosphere during their descent on Venus and Jupiter or crawl around after soft landing on the surfaces of Mars and Titan.

“The ability to alter the flight path in the atmosphere and to deploy the probes would vastly expand the capabilities of planetary balloons and make possible breakthrough observations that are not feasible with any other platform,” says Dr. Pankine. The figure illustrates a DARE platform operating at Venus.

Alexey A. Pankine | EurekAlert!
Further information:
http://www.gaerospace.com/press-releases/nov2002.html

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>