Air-sea interaction tower built off Marthas vineyard
ASIT with platform in place
In the deep waters two miles south of Edgartown on Marthas Vineyard, not far from where, two centuries ago, the likes of Captain Ahab and a thousand others kept their watch for the great white and his kin, we are now searching to understand another potential beast in those parts: the ocean and the weather.
But this is no allegory. Hoping to avoid any recurrence in these sometimes turbulent waters of the horrendous storms so intensely portrayed in Moby Dick as well as The Perfect Storm, the Office of Naval Research has built a tower bristling from top to bottom with sensors. The Air-Sea Interaction Tower will continually measure atmospheric and ocean conditions such as air temperature, humidity, solar radiation and carbon dioxide, as well as water temperature, salinity or salt content, wave height and direction, water circulation, current speed and direction, and sediment transport. It will directly measure momentum, heat, and mass exchange between the atmosphere and ocean. Anchored 50 feet down into the ocean floor, the tower extends 76 feet into the marine atmosphere. It will be maintained and operated by scientists at the Woods Hole Oceanographic Institution (WHOI) in Massachusetts and will be connected by undersea cables to WHOIs Marthas Vineyard Coastal Observatory (MVCO).
Gail Cleere | EurekAlert!
Further information:
http://www.onr.navy.mil/
Solving the mystery of carbon on ocean floor
05.12.2019 | University of Delaware
Great Barrier Reef study shows how reef copes with rapid sea-level rise
05.12.2019 | University of Sydney
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.
Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Detailed insight into stressed cells
05.12.2019 | Life Sciences
05.12.2019 | Life Sciences
First field measurements of laughing gas isotopes
05.12.2019 | Materials Sciences