Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suction and pull drive movement of Earth’s plates, U-M researchers show

04.10.2002


As anyone with a smattering of geological knowledge knows, Earth’s crust is made up of plates that creep over the planet’s surface at a rate of several inches per year. But why do they move the way they do? Even experts have had trouble teasing out the exact mechanisms.



A model developed by University of Michigan researchers and published in the Oct. 4 issue of Science provides a relatively simple explanation.

"It’s been known that slabs (portions of plates that extend down into the Earth) drive convection in Earth’s mantle, and ultimately the motion of the surface plates, but it hasn’t been well established exactly how that happens---the ideas have been fairly vague," says Clinton Conrad, a postdoctoral fellow in the department of geological sciences. "In this paper, we’ve been able to describe more precisely how slabs interact with the plates."


When two plates collide, one is forced down beneath the other into the mantle (the plastic-like layer between Earth’s crust and core that flows under pressure), creating what geologists call a subduction zone. Because subducting slabs are colder and denser than surrounding mantle material, they tend to sink like a lead ball in a vat of molasses.

There are two main ways these sinking slabs might influence plate motion. If a slab is attached to a plate, the slab can directly pull the plate toward the subduction zone. A slab that is not well attached to a plate, on the other hand, can’t pull directly on the plate. Instead, as it sinks, it sets up circulation patterns in the mantle that exert a sort of suction force, drawing nearby plates toward the subduction zone much as floating toys are drawn toward the outlet of a draining bathtub.

To understand the relative importance of slab pull and slab suction forces, Conrad and assistant professor of geological sciences Carolina Lithgow-Bertelloni, with whom he worked on the project, developed models in which: 1) only slab suction was operating; 2) only slab pull was operating; and 3) both slab suction and slab pull were at work. Then they compared the plate motions that would result from each of these scenarios with actual plate motions. The best fit was the model that combined slab pull and slab suction forces.

The model also explained an observation that has baffled geodynamicists for some time. "The way the observation was originally framed was that plates that have continents on them are slow, compared to plates that are only oceanic," says Lithgow-Bertelloni. But the real issue is whether or not the plates have slabs attached, she explains. Overriding plates, which have no slabs, are slower than subducting plates, which have slabs. The explanation? Subducting plates move faster because the pull effect acts directly on them, making them move rapidly toward the subduction zone. Overriding plates are also drawn toward the subduction zone---by the suction effect---but at the same time, the pull effect creates forces in the mantle that counteract that motion. The net effect is that overriding plates move more slowly toward the subduction zone than subducting plates do.

"We’ve been able to explain that the difference in speed occurs because slab pull generates mantle flow that counteracts the motion of the overriding plate," says Lithgow-Bertelloni. "We also found that this effect is only important for slabs in the upper 600 to 700 kilometers of the mantle. Any slabs deeper than 700 kilometers do not contribute to this effect. They’re important for driving flow in the mantle, but they’re not important for the pull."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.geo.lsa.umich.edu/dept/faculty/lithgowbertelloni/index.html
http://pubs.usgs.gov/publications/text/understanding.html
http://www.platetectonics.com/

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>