Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Engineers Creating ’More Refined’ Global Climate Model

18.09.2002


Frustrated by the limitations of present numerical models that simulate how Earth’s climate will be altered by factors such as pollution and landscape modification, Duke University engineers are creating a new model incorporating previously-missing regional and local processes.



"The model we are developing is much more refined," said the project’s leader, Roni Avissar, chairman of the Department of Civil and Environmental Engineering at Duke’s Pratt School of Engineering.

Unlike previous designs now used by the world’s climatologists, Avissar said Duke’s model will have a "telescoping capability" to zoom in from global conditions to more localized ones in areas as small as parts of individual states like North Carolina.


The Duke design can thus, for example, model the far-reaching impacts of individual thunderstorms. "These local storms are not very big in size but are extremely powerful in affecting the global atmosphere," he said in an interview. "The current climate models have no capability to simulate those things."

Avissar (http://www.cee.duke.edu/faculty/avissar_r/index.html) currently heads a scientific steering group in charge of advising federal agencies such as the National Science Foundation and the National Oceanic and Atmospheric Administration about research shortcomings in the area of the "global water cycle."

The global water cycle is the term scientists use to describe how water gets distributed around the planet through a cycle of evaporation, transport and precipitation. Pound for pound, water vapor is a more powerful heat-trapping "greenhouse gas" than the carbon dioxide emitted by human activities, according to experts.

Avissar, previously the chairman of Rutgers University’s Department of Environmental Sciences, and founding director of Rutgers’ Center for Environmental Prediction, has done extensive studies on the roles of water and other environmental factors on climate in tropical forests such as the Amazon.

"From a global water point of view, that’s where the action is," he said of the tropics. "You modify the water cycle there, and it going to affect the entire planet."

In the tropics as well as in Earth’s more temperate zones, thunderstorms provide a key influence on water distribution and weather, Avissar said. For instance, the alteration of worldwide rainfall patterns observed during El Nino events are triggered by "an increase in thunderstorm activity as a result of an unusual sea-surface temperature warming in the Pacific," he said.

Yet thunderstorms are too small and localized to be included in current global climate models, which work on scales so large that an entire state is represented by just "one point" in huge worldwide grid, he noted.

By contrast, Duke’s new Ocean-Land-Atmosphere Model -- abbreviated OLAM -- works on multiple scales. "By using a numerical trick to modify the grid that we use to simulate the planet, we have the capability to go to a small grid to simulate those thunderstorms," he said. "And we can understand globally their impact much better.

"So it has this telescoping capability from one scale to the other, to represent the entire planet as well as have a focus on a given region. If you want to work regionally, you can. If you want to work globally, you can do that too. Or you can work with both of them simultaneously."

OLAM -- which also means "world" in the original language of the Old Testament, Avissar said -- was designed by Robert Walko, a master programmer and senior scientist at the Pratt School.

Both men were post-doctoral researchers at Colorado State University, where Walko designed and developed the Regional Atmospheric Modeling System, one of the most widely-used current models for regions the size of the Southwestern or Northeastern United States. They later worked together at Rutgers, and now at Duke.

Another key factor in OLAM’s development is a powerful "Beowulf Cluster" of computers -- a linked group of desktop computers that collectively can serve as a substitute for a mainframe supercomputer. That cluster is among several now working around the clock at the Pratt School and elsewhere at Duke.

While the OLAM project is mostly a product of the Pratt School’s civil and environmental engineering department, other research groups are also contributing to the model. For instance, a "vegetation dynamics" model developed by a group now at Harvard, which simulates the growth and senescence of vegetation communities and their interactions with soils, water and climate, will soon be merged with "the fluid dynamics components of the planetary model that we already have," he said.

The Pratt School project has also developed a partnership with ATMET, a small private Colorado company formed by Avissar, Walko and another researcher that does meteorological and climatological forecasting.

ATMET "is probably going to use this model for come commercial applications that are cannot be performed in a university environment," Avissar added. "Let’s say that you want to forecast how cold the next winter will be because that affects the coffee market."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Earth Sciences:

nachricht The seismicity of Mars
25.02.2020 | ETH Zurich

nachricht Major wind-driven ocean currents are shifting toward the poles
25.02.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>