Changes in the winds could have been the cause of an abrupt glacial climatic change

Scientists from the Complutense University of Madrid (UCM) and the Potsdam-Institute for Climate Impact Research in Germany have carried out a study which identifies small alterations in the superficial sea winds as the factors with a key role in the abrupt climatic change that occurred over the last glacial period whose origin is not yet fully understood. The research has been published in the prestigious journal Geophysical Research Letters receiving a special mention from the American Geophysical Union.

This study, carried out by researchers Marisa Montoya and Anders Levermann, concluded that there is a precise point from which a small variation in the speed of sea winds corresponds to a dramatic change in the Atlantic circulation intensity. According to Marisa Montoya, “If the glacial climate had been in the vicinity of that point, small wind changes could have caused sudden and significant climatic changes during that period”

The study was based on climatic simulations called Last Glacial Maximum (LGM) (the period of maximum extension of the perpetual ice sheets that took place over 21.000 years ago). These simulations have demonstrated the existence of a threshold after which a small change in wind speed causes disproportionately large changes in the sea current speed. The results indicate that these changes in wind speed could have had a particularly important role in the abrupt climatic change of the last ice age.

Climate simulation of the Last Glacial Maximum is one of the principal challenges for experts in this area. The comparison of results from these simulations with climatic reconstructions based on data gathered from natural elements, such as sea sediments or the oldest ice samples; permit the evaluation of the climatic models in conditions independent from the ones used for their design. The results confirm the relevance of the small variations and help further substantiate the hypothesis about the physical mechanisms responsible for the climatic changes observed in the reconstructions.

Both, the climatic simulations as well as the reconstructions, indicate that variations in the Atlantic Ocean circulation could have been the key mechanism responsible for the abrupt climatic change that took place over the ice age. This circulation plays a fundamental role in the regulation of climate on a global scale, since it transports large quantities of relatively warm water from low latitudes to northern regions, softening the climate of countries like Norway or Ireland in comparison with other regions in the same latitude, but with much harsher climates, like Alaska or New York. This study therefore suggests that the changes in oceanic circulation could have been caused by changes in the speed of surface winds.

Media Contact

Oficina Información Científica alfa

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors