Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Hawaii researchers discover new pathway for methane production in the oceans

07.07.2008
A new pathway for methane production has been uncovered in the oceans, and this has a significant potential impact for the study of greenhouse gas production on our planet.

The article, released in the prestigious journal Nature Geoscience, reveals that aerobic decomposition of an organic, phosphorus-containing compound, methylphosphonate, may be responsible for the supersaturation of methane in ocean surface waters.

Methane is a more potent greenhouse gas than CO2 on a per weight basis. Although the volume of methane in the atmosphere is considerably less than CO2, methane is much more efficient at trapping the long wavelength radiation that keeps our planet habitable but is also responsible for enhanced greenhouse warming. Today, between 20-30% of the total radiative forcing of the atmosphere is due to methane. Terrestrial sources of methane production are well known and studied (including extraction from natural gas deposits and fermentation of organic matter), but those known sources did not account for the levels of methane observed in the atmosphere.

David Karl, an Oceanographer in the School of Ocean and Earth Science and Technology at the University of Hawai'i at Mânoa and lead author of this paper, was interested in this "methane enigma" and why the surface ocean was loaded with methane, over and above levels found in the atmosphere. When looking at the literature, Karl found a possible solution to the enigma, in the compound methylphosphonates, a very unusual organic compound only discovered in the 1960s. In the laboratory, the aerobic growth of certain bacteria on methylphosphonate can lead to the production of methane, but until now this process of methylphosphonate degradation in the ocean had not been suggested as a possible pathway for the aerobic production of methane in the sea.

"When people began measuring methane in the ocean, they found that methane concentrations varied with geographical location and with water depth", says Karl. "If methane was inert in the ocean, its concentration should be constant and nearly equal to the concentration in the atmosphere. What the scientists found was that methane was lower than expected in deep waters, implying net consumption by microbes. However the big surprise was that near surface concentrations were higher than in the overlying atmosphere which indicated a local production of methane in the sea. Because methane is produced only in regions devoid of oxygen and since the surface ocean contains high oxygen levels this was very perplexing."

Karl was able to combine a long term interest in methane, 20 years of ocean observing data at the Hawaii Ocean Timeseries site Station Aloha, and new technology that Massachusetts Institute of Technology co-author Edward DeLong and colleagues have developed to produce methane in aerobic marine environments. "I think this work nicely demonstrates the complementarity of different methods and approaches, which include oceanography, microbial ecology, and genomics techniques," says DeLong. "In the case of genomics, the growing databases of marine microbial genomic and metagenomic data have great potential to help us link which organisms, and which genes, are responsible for driving important nutrient and elemental cycles in the sea, like aerobic methane generation. With our colleagues at the Center for Microbial Oceanography: Research and Education (C-MORE, of which Karl is the Director, and DeLong the Co-Director), we plan next to learn how and when microbial communities turn on and off their methane production genes, in response to the methane precursors, like methylphosphonate, in their natural environment. This should provide new insights about the 'who' and the 'how' of this newly discovered methane generating process in the sea."

Although the implications for global climate change are still being studied, the warming and further stratification of the ocean seem likely to affect marine methane production. "This is a newly recognized pathway of methane formation that needs to be incorporated into our thinking of global climate," says Karl. "Since our oceans cover ¾ of the planet, you just need to stimulate this pathway a little bit and you're going to create more methane. And one way you can tweak it is to stratify the oceans, which we know will happen. All of the climate models show that the ocean will become more nutrient limited over time."

Phil Taylor, Acting Head of the Ocean Section, Division of Ocean Sciences at the National Science Foundation (NSF) agrees. "This remarkable discovery about methane production where we thought there would be none is a harbinger of many new insights on the ocean's changing biogeochemical nature, and the intricate microbiological reasons for those changes."

Interest in this research crosses many specialties. Oceanographers will be excited because it offers a solution to the long standing methane paradox. Microbiologists will be excited because it shows an aerobic production pathway of methane, which goes against everything that is currently known about methane, and Climatologists will be interested because it's a potent greenhouse gas that we don't have constraints on, and this new pathway is very exciting.

"NSF funded C-MORE with the hope that its scientists would make new discoveries about the vast genomic diversity and complexity in the microbial world, and its impacts from cellular to global scales," says Matt Kane, Program Director for the NSF Division of Environmental Biology. "These findings are an example of the payoffs that come from an interdisciplinary and integrative approach to microbial oceanography."

This research was supported by the Gordon and Betty Moore Foundation and the National Science Foundation.

SOEST Media Contact: Tara Hicks Johnson, (808) 956-3151, hickst@hawaii.edu

Aerobic production of methane in the sea
David M. Karl, Lucas Beversdorf, Karin M. Björkman, Matthew J. Church, Asuncion Martinez & Edward F. Delong Nature Geoscience, Published online: 29 June 2008 | doi:10.1038/ngeo234

http://www.nature.com/ngeo/journal/v1/n7/abs/ngeo234.html

The School of Ocean and Earth Science and Technology was established by the Board of Regents of the University of Hawai'i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.nature.com/ngeo/journal/v1/n7/abs/ngeo234.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>