Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Houston called ’lightning capital of Texas’

16.07.2002

COLLEGE STATION - Lightning may not often strike twice in the same place, but it sure can hang out repeatedly in the same neighborhood. In Texas, that neighborhood is Houston, which Texas A&M University atmospheric scientists call the "lightning capital of the state."

Results of their lightning research, indicating that the high-energy stuff likes the city life, was originally published in Journal of Geophysical Research - Atmospheres, and an overview of that study is featured in the online July 1 issue of the prestigious science magazine, Nature.

The lightning study was co-authored by Texas A&M graduate student Scott Steiger, Texas A&M atmospheric scientist Richard Orville and Gary Huffines of Wright-Patterson Air Force Base in Ohio.

"We looked at 12 years of data and found that Houston gets more lightning than surrounding less metropolitan areas," Orville said. "The greater lightning frequency is not seasonal and may result from a combination of urban heat island effects and air pollution."

During the 12-year period from 1989 to 2000, the Houston area experienced 1.6 million cloud-to-ground lightning flashes, with 75 percent of them occurring in the summer months of June, July and August, 12 percent in December, January and February and the rest distributed throughout the remainder of the year. Refining of earlier methods enabled the researchers to study the concentration of lightning flashes in areas as small as 5 km.

Data analysis, including computer simulations, suggests that Houston’s urban heat island effect causes clouds and thunderstorms. Urban areas heat up faster than agricultural lands because of the increased residential density and industrial activity, in Houston’s case resulting in flow of cooler sea air inland toward the city center. As the cooler air rushes in, it forces the warmer air to rise, and as that air rises, moisture in it condenses, clouds form and thunderstorms occur. Further sea breezes then push the storms toward the northeast, with the observed lightning maximum over and to the northeast of the city.

Houston’s air pollution may also be contributing to the frequent lightning. Soot particles emitted as pollutants from cars and power plants join other atmospheric aerosols originating from human activities and form the nuclei of cloud particles.

"Scientists believe that the charge separation mechanism of thunderstorms is determined by the size, concentration and phase of interacting cloud particles, in addition to temperature, vertical air velocity and liquid water content," Orville notes. "So the increased aerosol loading in urban areas may result in enhanced lightning activity and may be responsible for the observed high flash density in the Houston area."

Nationwide, lightning occurs when electric charges build up in clouds and then discharge to the ground. The polarity of lightning varies, with 90 percent of flashes bringing negative charges to ground and 10 percent, positive to ground. According to Orville, the positive discharges are more dangerous and often occur over forested areas, igniting destructive fires.

Lightning data is collected by a network of 106 sensors distributed over the 48 contiguous states. The sensors measure the electromagnetic fields from lightning discharges, much like static on a radio. Researchers use instruments to process recordings of the "static" and triangulate the location of the spot where the lightning strike occurred.

The lightning study was funded by the National Science Foundation, the National Oceanic and Atmospheric Administration and the Texas Air Research Center. An earlier publication in Geophysical Research Letters (May 2001) was co-authored by Orville, Steiger and Huffines, fellow Texas A&M faculty members John Nielsen-Gammon and Renyi Zhang and graduate students Brandon Ely and Stephen Phillips, along with Steve Allen and William Read of the National Weather Service, Houston-Galveston office. Lightning sensor data was obtained by the National Lightning Detection Network, operated by Global Atmospherics, Inc., of Tucson, Ariz.

"Sea breezes and storms have always converged over Houston, but 400 years ago it was just a natural effect, not influenced by people," Orville observed. "Now the 3 to 4 million persons who live in the Houston area, plus the 49 percent of the petroleum refining capacity in the U.S. located there create a powerful heat island effect, resulting in more intense cumulus cloud formation and more intense thunderstorms."

Judith White | EurekAlert

More articles from Earth Sciences:

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht The lower mantle can be oxidized in the presence of water
25.05.2020 | Science China Press

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New double-contrast technique picks up small tumors on MRI

26.05.2020 | Medical Engineering

Increased Usability and Precision in Vascular Imaging

26.05.2020 | Life Sciences

Sugar turns brown algae into good carbon sinks

26.05.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>