Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Join Science Team to Chase and Capture Tornado Data

25.06.2008
Their job is to take measurements of a tornado’s rear flank downdraft.

And yes, said several Iowa State University students who have joined Tim Samaras, a Colorado-based researcher who was named a National Geographic Society “Emerging Explorer” in 2005 and is a principal engineer for Applied Research Associates Inc., some adrenaline is involved. But that’s not why they’re driving instrument-carrying cars a mile or so to the south or east of the storms that have regularly blown across tornado alley this spring and summer.

They’re driving into rain, wind, lightning and hail to chase data: temperature, dew point, barometric pressure, wind speed, wind direction and exact location. The students’ measurements will be analyzed by scientists trying to understand more about how tornadoes are formed.

“We’re measuring air circulation near the tornado,” said Chris Karstens, an Iowa State graduate student in meteorology from Atlantic. “There are questions about that air’s role in forming tornadoes and in tornado longevity. We think it has a central role in tornadoes.”

Karstens, who spent five days on the road with Samaras’ crew last month, said he saw and chased about 12 tornadoes. Most were weak storms. But he saw a few that were a mile wide or bigger.

Bill Gallus, an Iowa State professor of geological and atmospheric sciences, said this is the third year Iowa State students have done field research with Samaras. They’re generally on the road throughout May and June. Students volunteer to be part of Samaras’ “TWISTEX” (Tactical Weather Instrumented Sampling in/near Tornadoes/Thunderstorms Experiment, http://twistex.org). Those selected are usually experienced storm chasers and have done well in forecasting courses. The students are not paid, but their field expenses are covered. The students’ research is part of an Iowa State project supported by the National Oceanic and Atmospheric Administration and led by Partha Sarkar, an Iowa State professor of aerospace engineering and director of the Wind Simulation and Testing Laboratory.

The idea is to send students out to the field to learn more about how storms develop and evolve, Gallus said. They also learn about working with mobile instruments and taking measurements.

“They come back and they’re so excited about the data they can analyze,” Gallus said.

They’re also excited about the stories they can tell.

Brandon Fisel, a graduate student in meteorology from Hebron, Ind., remembers May 29 near Osborne, Kan. That’s when Samaras dropped three probes containing cameras and instruments in the path of an oncoming tornado. The probes took a direct hit and could yield the first measurements of wind speed at the bottom of a tornado.

W Scott Lincoln, a graduate student in environmental science from Alleman, likes to talk about the day he drove through a tornado that was just beginning to form. He didn’t know what was happening at the time, but the car’s weather instruments later confirmed the storm had begun to circulate over his head.

Jayson Prentice, a senior meteorology student from Terril, says his time with Samaras’ experiment can help him build his research resume for graduate school.

And what about the chase? Does it get scary when the storms kick up, as they have all too often this tornado season?

Well, said Karstens, most of the experiment “is just like you’re on a very long road trip” because the researchers drive hundreds of miles from storm system to storm system.

Prentice remembers the intensity of “a few moments when we were taking near-tornado windfall readings within a mile or a couple of miles of tornadoes. One tornado was over a mile wide.”

But, said Fisel, “the adrenaline is kind of going and you don’t feel scared at all.”

Besides, said Lincoln, the researchers aren’t “yahoo chasers going out for thrills.” They’re calling in reports to the National Weather Service. They’re recording as much data as they can. And they’re working to help scientists develop a better understanding of the deadly and destructive storms.

Bill Gallus | newswise
Further information:
http://www.iastate.edu

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>