Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds reveal deep source of platinum deposits

12.06.2008
The world's richest source of platinum and related metals is an enigmatic geological structure in South Africa known as the Bushveld Complex.

This complex of ancient magmas is known to have formed some two billion years ago, but the source of its metallic riches has been a matter of scientific dispute. Now researchers from the Carnegie Institution and the University of Cape Town have traced the origin of the unique ore deposits by using another of South Africa's treasures—diamonds.

The study, published in the June 12 issue of Nature, suggests that the source of these valuable ores may be ancient parts of the mantle beneath the African continent.

Platinum group elements (PGEs), which include platinum, palladium, rhodium, ruthenium, osmium and iridium, are extremely rare in the Earth's crust. Platinum, the most abundant, is 30 times rarer than gold. Mined only in a few places in the world, these elements are becoming increasingly important in applications ranging from pollution control (they are key components of catalytic converters in automobiles) to microelectronics.

Previous isotopic studies of rocks from the Bushveld Complex had suggested that a significant fraction of the magma that formed the complex and deposited the ores came from shallow parts of the crust, despite the rarity of PGEs there compared to the Earth's mantle. "But the ore layers are extremely homogeneous over hundreds of kilometers," says Steven Shirey of the Carnegie Institution's Department of Terrestrial Magnetism. "The crust is very heterogeneous. That suggests a deeper source for the platinum."

To test this idea, Shirey and Stephen H. Richardson of the University of Cape Town studied minute mineral inclusions in about 20 diamonds mined from areas surrounding the Bushveld Complex. The diamonds formed at depths of 150-200 kilometers within the Earth's mantle. By measuring the ratios of certain isotopes of strontium, osmium, and neodymium in the mineral inclusions, the researchers were able to determine the isotopic "signatures" of the different regions of the mantle where the diamonds grew. They then compared these signatures with those of ore rocks in the Bushveld Complex.

Richardson and Shirey found that the isotopic signatures of the ores could be matched by varying mixtures of source rocks in the mantle beneath the continental crust. That these parts of the mantle were involved in producing the magmas is also suggested by seismic studies, which reveal anomalies beneath the complex. The anomalies were likely the result of magmas rising through these parts of the mantle.

"This helps explain the richness of these deposits," says Richardson. "The old subcontinental mantle has a higher PGE content than the crust and there is more of it for the Bushveld magmas to traverse and pick up the PGEs found in the ores."

The results of this study may be applicable to similar ore deposits elsewhere, such as the Stillwater Complex in Montana. "Knowing how these processes work can lead to better exploration models and strategies," says Shirey.

Steven Shirey | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Earth Sciences:

nachricht Shrinking of Greenland's glaciers began accelerating in 2000, research finds
11.12.2019 | Ohio State University

nachricht One-third of recent global methane increase comes from tropical Africa
11.12.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>