Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds reveal deep source of platinum deposits

12.06.2008
The world's richest source of platinum and related metals is an enigmatic geological structure in South Africa known as the Bushveld Complex.

This complex of ancient magmas is known to have formed some two billion years ago, but the source of its metallic riches has been a matter of scientific dispute. Now researchers from the Carnegie Institution and the University of Cape Town have traced the origin of the unique ore deposits by using another of South Africa's treasures—diamonds.

The study, published in the June 12 issue of Nature, suggests that the source of these valuable ores may be ancient parts of the mantle beneath the African continent.

Platinum group elements (PGEs), which include platinum, palladium, rhodium, ruthenium, osmium and iridium, are extremely rare in the Earth's crust. Platinum, the most abundant, is 30 times rarer than gold. Mined only in a few places in the world, these elements are becoming increasingly important in applications ranging from pollution control (they are key components of catalytic converters in automobiles) to microelectronics.

Previous isotopic studies of rocks from the Bushveld Complex had suggested that a significant fraction of the magma that formed the complex and deposited the ores came from shallow parts of the crust, despite the rarity of PGEs there compared to the Earth's mantle. "But the ore layers are extremely homogeneous over hundreds of kilometers," says Steven Shirey of the Carnegie Institution's Department of Terrestrial Magnetism. "The crust is very heterogeneous. That suggests a deeper source for the platinum."

To test this idea, Shirey and Stephen H. Richardson of the University of Cape Town studied minute mineral inclusions in about 20 diamonds mined from areas surrounding the Bushveld Complex. The diamonds formed at depths of 150-200 kilometers within the Earth's mantle. By measuring the ratios of certain isotopes of strontium, osmium, and neodymium in the mineral inclusions, the researchers were able to determine the isotopic "signatures" of the different regions of the mantle where the diamonds grew. They then compared these signatures with those of ore rocks in the Bushveld Complex.

Richardson and Shirey found that the isotopic signatures of the ores could be matched by varying mixtures of source rocks in the mantle beneath the continental crust. That these parts of the mantle were involved in producing the magmas is also suggested by seismic studies, which reveal anomalies beneath the complex. The anomalies were likely the result of magmas rising through these parts of the mantle.

"This helps explain the richness of these deposits," says Richardson. "The old subcontinental mantle has a higher PGE content than the crust and there is more of it for the Bushveld magmas to traverse and pick up the PGEs found in the ores."

The results of this study may be applicable to similar ore deposits elsewhere, such as the Stillwater Complex in Montana. "Knowing how these processes work can lead to better exploration models and strategies," says Shirey.

Steven Shirey | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

Rules of brain architecture revealed in large study of neuron shape & electrophysiology

18.06.2019 | Life Sciences

Research highlights possible targets to help tackle Crohn's disease

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>