Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For hurricanes, storms, raindrop size makes all the difference

10.06.2008
When Tropical Storm Gaston hit Richmond, Va., in August 2004, its notable abundance of small and mid-sized raindrops created torrential rains that led to unexpected flash flooding throughout the city and its suburbs.

New research from NASA has concluded that tropical cyclones like Gaston produce rain differently than another class of storms called "extra-tropical" cyclones. According to the study, making a proper distinction between these systems by looking at both raindrop size and abundance may be a key to assisting weather forecasters in estimating rainfall intensity. By doing so, forecasters can reduce the surprise factor of flash flooding and the unfortunate loss of property and life.

Ali Tokay, a research scientist from the Joint Center for Earth Systems Technology (JCET) at the University of Maryland Baltimore County, Baltimore, and NASA's Goddard Space Flight Center, Greenbelt, Md., compared the rain measurements collected in tropical storms and hurricanes during the past three Atlantic hurricane seasons with measurements after these storms transitioned to being extra-tropical. Tokay's study appeared in the May issue of the American Meteorological Society's Monthly Weather Review.

When a tropical cyclone -- the generic name for tropical depressions, tropical storms and hurricanes -- merges with a mid-latitude frontal storm system, measurable changes to the raindrop size and abundance occur as the system transitions to become extra-tropical. Extra-tropical cyclones also form outside the tropics without being part of a tropical system, and tend to form over land rather than over the open ocean. This category of storm can produce anything from a cloudy sky to a thunderstorm as it develops between weather fronts, the boundaries separating air masses of different densities.

Tokay looked at raindrop size, rain intensity, and the area in which rain falls in both tropical cyclones and extra-tropical cyclones using ground-based rain-measuring instruments called disdrometers. These instruments measure the range of raindrop sizes in a storm and the intensity of the rainfall. The disdrometer is an important part of the ground-based rain measuring instruments that are used to validate rainfall seen from satellites including the Tropical Rainfall Measuring Mission (TRMM), a joint mission with NASA and the Japanese Space Agency. He concluded that tropical cyclones that form over water tend to rain harder and have a greater amount of smaller drops before they transition to being extra-tropical with raindrops of larger size and mass.

"Torrents of rainfall from tropical storms are not surprising since the systems are large and move slowly. It is also true that slow moving frontal systems associated with an extra-tropical cyclone can result in abundant rainfall at a site," said Tokay. "What is less known is that the distribution of raindrops within a volume of air between the two systems differs substantially even though weather radar may measure the same returned power which is known as reflectivity." This is why disdrometer measurements of raindrop size are needed.

"Both rain intensity and reflectivity are integral products of raindrop size distribution, but they are mathematically related to different powers of the drop size," said Tokay. Weather radars cannot measure the range of raindrop sizes. As a result, rainfall estimates from weather radars must employ the use of equations that make assumptions about raindrop size. These assumptions can result in underestimation of rain intensity, and the possibility of deadly flooding.

In the study, Tokay uses disdrometer data from various sites around the U.S. and abroad. Most of the data were collected at NASA's Wallops Flight Facility, Wallops Island, Va., where Paul Bashor of Computer Sciences Corporation, Wallops Island, Va. maintains several types of disdrometers. The data from two tropical storms were collected at Orlando, Fla., and Lafayette, La. through collaborative efforts with Takis Kasparis at the University of Central Florida's Orlando campus, and Emad Habib of the University of Louisiana at Lafayette.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2008/raindrop_size.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>