Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report confirms drilling, not earthquake, caused Java mud volcano

09.06.2008
A two-year old mud volcano which is still spewing huge volumes of mud, has displaced more than 30,000 people and caused millions of dollars worth of damage was caused by the drilling of a gas exploration well, an international team of scientists has concluded.

The most detailed scientific analysis to date disproves the theory that an earthquake that happened two-days before the mud volcano erupted in East Java, Indonesia, was potentially to blame.

The report by British, American and Indonesian and Australian scientists is published this week in the academic journal Earth and Planetary Science Letters. It outlines and analyses a detailed record of operational incidents on the drilling of a gas exploration well, Banjar-Panji-1*.

Lead author, Prof Richard Davies of Durham University, UK, published research in January 2007 which argued the drilling was most likely to blame for the eruption of the ‘Lusi’ mud volcano on May 29 2006.

This theory was challenged by the company that drilled the well and some experts who argued that the Yogyakarta earthquake two days before the eruption, which had an epicentre 250km from the mud volcano, was the cause.

Graduate student Maria Brumm and Prof Michael Manga of University of California, Berkeley undertook a systematic study to test the claims that the eruption was caused by this earthquake. They found that none of the ways earthquakes trigger eruptions could have played a role at Lusi.

Prof Michael Manga, of University of California, Berkeley, said: “We have known for hundreds of years that earthquakes can trigger eruptions. In this case, the earthquake was simply too small and too far away.”

The new report concludes the effect of the earthquake was minimal because the change in pressure underground due to the earthquake would have been tiny. Instead, scientists are “99 per cent” certain drilling operations were to blame.

Prof Davies, of Durham University’s Centre for Research into Earth Energy Systems (CeREES) explained: “We show that the day before the mud volcano started there was a huge ‘kick’ in the well, which is an influx of fluid and gas into the wellbore. We show that after the kick the pressure in the well went beyond a critical level.”

“This resulted in the leakage of the fluid from the well and the rock formations to the surface – a so called ‘underground blowout’. This fluid picked up mud during its accent and Lusi was born.

He said chances of controlling this pressure would have been increased if there was more protective casing in the borehole.

Prof Davies added: “We are more certain than ever that the Lusi mud volcano is an unnatural disaster and was triggered by drilling the Banjar-Panji-1 well.”

Prof Manga added: “While this is a most unfortunate disaster, it will leave us with a better understanding of the birth, life and death of a volcano.”

Lusi is still flowing at 100,000 cubic metres per day, enough to fill 53 Olympic swimming pools.

Recent research which Prof Davies was involved in showed it is collapsing by up to three metres overnight and could subside to depths of more than 140 metres, having a significant environmental impact on the surrounding area for years to come.

* The well is operated by oil and gas company Lapindo Brantas, which has confirmed the published data is correct.

Claire Whitelaw | alfa
Further information:
http://www.dur.ac.uk/news/allnews/?itemno=6575
http://www.durham.ac.uk/news

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>