Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

September launch for ESA's gravity mission GOCE

29.05.2008
A new launch date has been set for GOCE. The change of date is due to precautionary measures taken after the malfunction of an upper-stage section of a Russian Proton launcher. Now confirmed not to affect GOCE's Rockot launcher, the most advanced gravity mission to date is scheduled for lift-off on 10 September 2008.

As a consequence of the new launch date, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is currently undergoing final flight reconfiguration at ESA-ESTEC in the Netherlands. Shipment to the Plesetsk launch site in northern Russia will take place in July - from where the sleek five-metre long GOCE spacecraft will be carried into its unusually low orbit on a modified

SS-19 Russian Intercontinental Ballistic Missile (ICBM) launcher. The adaptation of the SS-19, called 'Rockot', uses the two original lower stages of the ICBM in conjunction with an upper-stage called Breeze-KM for commercial payloads.

Up until early March this year, GOCE was well on its way to being launched at the end of May. However, as a result of the failure on 15 March of a Proton Breeze-M upper-stage, all launches using Breeze were suspended pending investigations by the Russian State Commission. Although GOCE's Breeze-KM upper-stage is different to the larger Proton Breeze-M, they do share some common elements. The investigations have led to the conclusion that it is safe to use the Breeze-KM as is, resulting in the Russian State Commission clearing GOCE for launch.

Since August last year, the high-tech GOCE spacecraft has been undergoing extensive testing at ESA's test facilities in the Netherlands. The programme included a wide range of qualification tests to ensure that the satellite could withstand the rigours of launch as well as the harsh environment of space. One such series of tests was carried out in the Large Space Simulator where, under vacuum, the extreme heat of the Sun is simulated by lamps and mirrors - subjecting the satellite to 1400 W of power over each square metre of the side of the satellite that faces the Sun.

As well as being designed to fly in an orbit as low as is technically feasible to retrieve the strongest possible gravity signal, the sleek arrow-shaped satellite is ultra-stable to ensure that measurements taken are of true gravity and not influenced by any movement of the satellite. GOCE, therefore, has none of the moving parts often seen on other spacecraft. Since GOCE is designed to orbit the Earth with one side always facing the Sun, one side only is equipped with solar panels.

Due to its low altitude and inclination, once a year the GOCE satellite will experience an eclipse period of 135 days with one eclipse of up to 28 minutes per orbit. A peculiarity of orbital dynamics is that one is free to choose the eclipse period to fall either between October and February or, between April and August by launching either in the morning or in the evening of the launch day.
Now launching in September, it is best to have the eclipses in the April to August time frame. The May launch would still have gone for the eclipse season in winter. The difference in the two configurations is that, as seen from the Sun, the satellite either flies clock- or anti-clockwise around the Earth. This has impact on the satellite configuration and some units have to be moved from one side of the satellite to the other. Thanks to the flexibility of the satellite design, this is a relatively simple operation. Therefore, modifications to accommodate this new flight configuration are about to be carried out at ESA in the Netherlands. When GOCE has been reconfigured, the spacecraft will be transported by aircraft from the Netherlands to Arkhangelsk in Russia, and from there by train to the launch site in Plesetsk for final testing.

Once launched, GOCE will begin to map global variations in the gravity field with unprecedented detail and accuracy. This will result in a unique model of the geoid, which is the surface of equal gravitational potential defined by the gravity field – crucial for deriving accurate measurements of ocean circulation and sea-level change, both of which are affected by climate change. GOCE-derived data is also much needed to understand more about processes occurring inside the Earth and for use in practical applications such as surveying and levelling.

Danilo Muzi | EurekAlert!
Further information:
http://www.esa.int

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>