Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots Go Where Scientists Fear to Tread

29.05.2008
Researchers at the Georgia Institute of Technology have created specially designed robots called SnoMotes to traverse potentially dangerous ice environments. The SnoMotes work as a team, autonomously collaborating among themselves to gather data that could give scientists a better understanding of the important dynamics that influence the stability of ice sheets.

Scientists are diligently working to understand how and why the world’s ice shelves are melting. While most of the data they need (temperatures, wind speed, humidity, radiation) can be obtained by satellite, it isn’t as accurate as good old-fashioned, on-site measurement and static ground-based weather stations don’t allow scientists to collect info from as many locations as they’d like.

And unfortunately, the locations in question are volatile ice sheets, possibly cracking, shifting and filling with water — not exactly a safe environment for scientists.

To help scientists collect the more detailed data they need without risking scientists’ safety, researchers at the Georgia Institute of Technology, working with Pennsylvania State University, have created specially designed robots called SnoMotes to traverse these potentially dangerous ice environments. The SnoMotes work as a team, autonomously collaborating among themselves to cover all the necessary ground to gather assigned scientific measurements. Data gathered by the Snomotes could give scientists a better understanding of the important dynamics that influence the stability of ice sheets.

“In order to say with certainty how climate change affects the world’s ice, scientists need accurate data points to validate their climate models,” said Ayanna Howard, lead on the project and an associate professor in the School of Electrical and Computer Engineering at Georgia Tech. “Our goal was to create rovers that could gather more accurate data to help scientists create better climate models. It’s definitely science-driven robotics.”

Howard unveiled the SnoMotes at the IEEE International Conference on Robotics and Automation (ICRA) in Pasadena on May 23. The SnoMotes will also be part of an exhibit at the Chicago Museum of Science and Industry in June. The research was funded by a grant from NASA’s Advanced Information Systems Technology (AIST) Program.

Howard, who previously worked with rovers at NASA’s Jet Propulsion Laboratory, is working with Magnus Egerstedt, an associate professor in the School of Electrical and Computer Engineering, and Derrick Lampkin, an assistant professor in the Department of Geography at Penn State who studies ice sheets and how changes in climate contribute to changes in these large ice masses. Lampkin currently takes ice sheet measurements with satellite data and ground-based weather stations, but would prefer to use the more accurate data possible with the simultaneous ground measurements that efficient rovers can provide.

“The changing mass of Greenland and Antarctica represents the largest unknown in predictions of global sea-level rise over the coming decades. Given the substantial impact these structures can have on future sea levels, improved monitoring of the ice sheet mass balance is of vital concern,” Lampkin said. “We’re developing a scale-adaptable, autonomous, mobile climate monitoring network capable of capturing a range of vital meteorological measurements that will be employed to augment the existing network and capture multi-scale processes under-sampled by current, stationary systems.”

The SnoMotes are autonomous robots and are not remote-controlled. They use cameras and sensors to navigate their environment. Though current prototype models don’t include a full range of sensors, the robots will eventually be equipped with all the sensors and instruments needed to take measurements specified by the scientist.

While Howard’s team works on versatile robots with the mobility and Artificial Intelligence (A.I.) skills to complete missions, Lampkin’s team will be creating a sensor package for later versions of Howard’s rovers.

Here’s how the SnoMotes will work when they’re ready for their glacial missions: The scientist will select a location for investigation and decide on a safe “base camp” from which to release the SnoMotes. The SnoMotes will then be programmed with their assigned coverage area and requested measurements. The researcher will monitor the SnoMotes’ progress and even reassign locations and data collection remotely from the camp as necessary.

When Howard’s research team first set out to build a rover designed to capture environmental data from the field, it took a few tries to come up with an effectively hearty design. The group’s first rover was delicate and ineffective. But after an initial failure, they decided to move on to something designed for consistent abuse — a toy. Instead of building yet another expensive prototype, Howard instead opted to start with a sturdy kit snowmobile, already primed for snow conditions and designed for heavy use by a child.

Howard’s group then installed a camera and all necessary computing and sensor equipment inside the 2-foot-long, 1-foot-wide snowmobile. The result was a sturdy but inexpensive rover.

By using existing kits and adding a few extras like sensors, circuits, A.I. and a camera, the team was able to create an expendable rover that wouldn’t break a research team’s bank if it were lost during an experiment, Howard said. Similar rovers under development at other universities are much more expensive, and the cost of sending several units to canvas an area would likely be cost-prohibitive for most researchers, she added.

The first phase of the project is focused primarily on testing the mobility and communications capabilities of the SnoMote rovers. Later versions of the rovers will include a more developed sensor package and larger rovers.

The team has created three working SnoMote models so far, but as many SnoMotes as necessary can work together on a mission, Howard said.

The SnoMote represents two key innovations in rovers: a new method of location and work allocation communication between robots and maneuvering in ice conditions.

Once placed on site, the robots place themselves at strategic locations to make sure all the assigned ground is covered. Howard and her team are testing two different methods that allow the robots to decide amongst themselves which positions they will take to get all the necessary measurements.

The first is an “auction” system that lets the robots “bid” on a desired location, based on their proximity to the location (as they move) and how well their instruments are working or whether they have the necessary instrument (one may have a damaged wind sensor or another may have low battery power).

The second method is more mathematical, fixing the robots to certain positions in a net of sorts that is then stretched to fit the targeted location. Magnus Egerstedt is working with Howard on this work allocation method.

In addition to location assignments, another key innovation of the SnoMote is its ability to find its way in snow conditions. While most rovers can use rocks or other landmarks to guide their movement, snow conditions present an added challenge by restricting topography and color (everything is white) from its guidance systems.

For snow conditions, one of Howard's students discovered that the lines formed by snow banks could serve as markers to help the SnoMote track distance traveled, speed and direction. The SnoMote could also navigate via GPS if snow bank visuals aren’t available.

While the SnoMotes are expected to pass their first real field test in Alaska next month, a heartier, more cold-resistant version will be needed for the Antarctic and other well below zero climates, Howard said. These new rovers would include a heater to keep circuitry warm enough to function and sturdy plastic exterior that wouldn’t become brittle in extreme cold.

Megan McRainey | newswise
Further information:
http://www.gatech.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>