Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sea Methane Scavengers Captured

14.05.2008
Scientists of the Helmholtz Centre for Environmental Research (UFZ) in Leipzig and the California Institute of Technology (Caltech) in Pasadena succeeded in capturing syntrophic (means "feeding together") microorganisms that are known to dramatically reduce the oceanic emission of methane into the atmosphere.

These microorganisms that oxidize methane anaerobically are an important component of the global carbon cycle and a major sink for methane on Earth.

Methane - a more than 20 times stronger greenhouse gas than carbon dioxide – constantly seeps out large methane hydrate reservoirs in the ocean floors, but 80 percent of it are immediately consumed by these microorganisms.

The importance of the anaerobic oxidation of methane for the Earths climate is known since 1999 and various international research groups work on isolating the responsible microorganisms, so far with little success. Pernthaler and co-workers developed a new molecular technique to selectively separate these microorganisms from their natural complex community, and subsequently sequenced their genome. The findings were exciting: Besides identifying all genes responsible for the anaerobic oxidation of methane, new bacterial partners of this syntrophic association were discovered and the ability to fix N2 could be demonstrated. The work has been published in the current issue of the renowned Journal Proceedings of the National Academy of Sciences (PNAS).

The beauty of small things revealed Microorganisms are the unseen majority on our planet: There are more than 100 Million times more microbial cells than stars in the visible universe, accounting for more than 90 percent of the Earths biomass. Yet, we have little idea what most of these bacteria and archaea are doing. It is not only their small size that makes them hard to study.

Most microorganisms can not be grown, and thus studied, in the lab. But recent developments of new molecular techniques allow the study of microorganisms where they live: In nature. This is leading to an explosion of knowledge with no end in sight. One of these techniques is genome sequencing - learning about the genetic make-up of an organism. This works well for single organisms, such as the sequencing of the human genome. The complexity of natural microbial communities, however, is a major problem.

The vast collection of genes can often not be linked to an organism or a physiological process. This plenitude of general information can be compared to a one-billion pieces puzzle of which you own only 300 pieces and you have to try to find out where which piece belongs and how the whole picture could look like.

Scientist at UFZ and Caltech now developed a method that solves this problem. Pernthaler and co-workers attached small ironbeads to the microorganisms of interest and pulled them out of the deep sea sediment by simply applying a magnet. These microbes are Archaea, which cooperate with sulfate reducing Bacteria to perform a thermodynamically tricky process: the anaerobic oxidation of methane (AOM).

These poorly understood consortia are globally distributed in oceanic sediments above methane hydrates and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere.

After sequencing the genomes of the purified syntrophic consortia, Pernthaler and co-workers could find all genes responsible for AOM. The scientist also discovered an unexpected diversity in the bacterial partners of this syntrophic association, which may play a role in the performance of AOM. Pernthaler and co-workers also found genes for N2 fixation and demonstrated in lab experiments that the AOM archaea are indeed fixing N2. These results are intriguing, especially since the fixation of N2 is energetically expensive processes and the energy gained by AOM is low. The potential for metabolic versatility combined with the ability to form partnerships with other microorganisms, might be the secret to the successful distribution of this biogeochemically significant group of microorganisms. This work is being published in PNAS, May 13th, 2008, the method has been patented (Pernthaler A, Orphan VJ (2007) US Patent 11/746,374).

http://www.alphagalileo.org/index.cfm?fuseaction=readrelease&releaseid=529276&ez_search=1

http://www.ufz.de/index.php?en=640

More about micro-biology and other topics related to biodiversity can be found in a special edition of the UFZ newsletter to the 9th Conference of the Parties (COP 9) to the Convention on Biological Diversity from 19 to 30 May

2008 in Bonn, Germany.

http://www.ufz.de/index.php?en=16709
http://www.ufz.de/index.php?en=10690
Publication:
Pernthaler A., Dekas, A.E., Brown C.T., Goffredi S., Embaye T., Orphan V.J. (2008): Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics.
PNAS - Proceedings of the National Academy of Sciences (May 8, 2008) Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0711303105
http://www.pnas.org/cgi/content/abstract/105/19/7052
http://www.pnas.org/current.shtml
Further information:
Helmholtz Centre for Environmental Research (UFZ) Dr Annelie Pernthaler
phone: +49-341-235-1377, -1260
http://www.ufz.de/index.php?en=13987
http://www.planetofmicrobes.com/
or
Tilo Arnhold (UFZ press office)
phone: +49-341-235-1269
email: presse@ufz.de
Links:
California
Institute of Technology:
http://www.caltech.edu/
Press Release: Partnerships of Deep-Sea Methane Scavengers Revealed http://mr.caltech.edu/media/Press_Releases/PR13141.html
Anaerobic oxidation of methane (AOM):
http://en.wikipedia.org/wiki/Anaerobic_oxidation_of_methane
Archaea:
http://en.wikipedia.org/wiki/Archaea
Fluorescent in situ hybridization:
http://en.wikipedia.org/wiki/Fluorescent_in_situ_hybridization
The ninth meeting of the Conference of the Parties (COP 9) http://www.cbd.int/cop9/ http://www.bmu.de/english/nature/un_conference_on_biological_diversity_2008/general_information/doc/39656.php

At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 25,700 employees in 15 research centres and an annual budget of around EUR 2.3 billion, the Helmholtz Association is Germanys largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | UFZ Leipzig-Halle
Further information:
http://www.ufz.de

More articles from Earth Sciences:

nachricht Do ice cores help to unravel the clouds of climate history?
21.06.2019 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht News from the diamond nursery
21.06.2019 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

Non-invasive view into the heart

24.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>