Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Moore sculpture could be re-erected thanks to 21 century science

14.05.2008
A dismantled Henry Moore sculpture could be re-erected in Kensington Gardens, London, thanks to the latest rock engineering techniques, says a team of experts today.

The Arch, a sculpture dismantled 12 years ago due to safety concerns, could be re-erected at its original site on the banks of the Serpentine Lake following a project exploring the use of rock engineering techniques for cultural heritage conservation.

Engineers at Imperial College London, in collaboration with the International Drawing Institute, Glasgow School of Art, and Tate, carried out a detailed analysis of the Arch to see whether engineering computer simulation and analysis techniques could be used to understand and preserve complex artefacts which experience structural problems.

The Arch, a six metre tall sculpture modelled on sheep collar bones joined together, was created in 1980 by Henry Moore and was dismantled into its seven component pieces in 1996 because of structural instabilities which caused it to be unsafe.

In order to allow the sculpture to be preserved and resurrected, the team needed to find out why it was structurally unsound. By testing rock samples and using laser scanning technologies which examined the large dismantled stone blocks, they gathered data which was used to generate 3D computer simulations of the sculpture for analysis.

By modelling how the structural stresses exerted pressures on the Arch, researchers found that its unusual shape, the poor location of the structural joints which held the blocks together, and the use of brittle travertine stone all contributed to its unsteadiness.

Using this information, the team believes that it has devised a new method to allow the sculpture to be held together without compromising its structure. This includes attaching the rock legs and top section together with fibreglass bolts and dowels and placing the structure on a base of specially reinforced concrete.

Dr John Harrison from Imperial College London’s Department of Earth Science and Engineering said:

“Rock engineering techniques are usually used for stabilisation of tunnels and rock slopes, but the basic concepts of understanding how rock behaves when it is subjected to loads are immediately applicable to stone sculptures. We can now apply this knowledge to preserving some of the nation’s most important and historic artworks.”

Dr Angela Geary from the International Drawing Research Institute, The Glasgow School of Art, added:

“We were delighted when the Henry Moore Foundation invited us to study the Arch as a subject for our research. It was a huge practical challenge, but it was very exciting and motivating to be working on such a significant real-world problem.”

Derek Pullen, Head of Sculpture Conservation at Tate, concluded:

“The outcome is a positive one for everyone involved, and our aim is now to expand across a wide range of artefacts from armoury to pottery and painting. Our methods could remove much of the guesswork from planning conservation treatment and could become an indispensable tool in the care of collections.”

The research was funded as part of the Finite Elements with Laser Scanning for mechanical analysis of Sculptural Objects (FELSSO) project by the Arts and Humanities Research Council, the Henry Moore Foundation with assistance also from the Royal Parks. The team is currently waiting for further funding to resurrect the Arch in Kensington Gardens.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>